TY - JOUR
T1 - Environmental estrogens inhibit the expression of insulin-like growth factor mRNAs in rainbow trout in vitro by altering activation of the JAK-STAT, AKT-PI3K, and ERK signaling pathways
AU - Hanson, Andrea M.
AU - Kittilson, Jeffrey D.
AU - Sheridan, Mark A.
N1 - Funding Information:
We would like to thank Heather Bergan, Alicia Ickstadt, Lincoln Martin, Dillon Marquart, Lindsey Norbeck, and Chad Walock for their technical assistance. This work was supported by grants from the US Geological Survey/North Dakota Water Commission and NSF (IOS1558037) to M.A. Sheridan; A. Hanson was supported by fellowships from the North Dakota Water Resources Research Institute and the NDSU Graduate School.
Publisher Copyright:
© 2021 Elsevier Inc.
PY - 2021/8/1
Y1 - 2021/8/1
N2 - Environmental estrogens (EE) have been found to disrupt a host of developmental, reproductive, metabolic, and osmoregulatory process in a wide-range of animals, particularly those in aquatic ecosystems where such compounds concentrate. Previously, we showed that EE inhibited post-embryonic organismal growth of rainbow trout in vivo, but the precise mechanism(s) through which EE exert their growth inhibiting effects remain unknown. In this study, we used rainbow trout (Oncorhynchus mykiss) as a model to investigate the direct effects of 17β-estradiol (E2), β-sitosterol (βS), and 4-n-nonylphenol (NP) on the synthesis of insulin-like growth factors (IGFs) and to elucidate the mechanism(s) by which EEs exert such effects. E2, βS, and NP significantly inhibited the expression of both IGF-1 and IGF-2 mRNAs in liver and gill in a time- and concentration-related manner. Although the response evoked by each EEs on the expression of IGF mRNAs was similar, the potency and efficacy varied with EE; the rank order potency/efficacy was as follows: E2 > NP > βS. The effects of EEs on the expression of IGF mRNAs was blocked by the estrogen receptor (ER) antagonist, ICI 182780. The mechanism(s) through which EEs inhibit IGF mRNA expression were investigated in isolated liver cells in vitro. EE treatment deactivated JAK, STAT, ERK, and AKT. Moreover, blockade of growth hormone (GH)-stimulated IGF expression by EE was accompanied by deactivation of JAK, STAT, ERK, and AKT. EEs also increased the expression of suppressor of cytokine signaling 2 (SOCS-2), a known inhibitor of JAK-2–an action that also was blocked by ICI 182780. These results indicate that EEs directly inhibit the expression of IGF mRNAs by disrupting GH post-receptor signaling pathways (e.g., JAK, STAT, ERK, and AKT) in an ER-dependent manner.
AB - Environmental estrogens (EE) have been found to disrupt a host of developmental, reproductive, metabolic, and osmoregulatory process in a wide-range of animals, particularly those in aquatic ecosystems where such compounds concentrate. Previously, we showed that EE inhibited post-embryonic organismal growth of rainbow trout in vivo, but the precise mechanism(s) through which EE exert their growth inhibiting effects remain unknown. In this study, we used rainbow trout (Oncorhynchus mykiss) as a model to investigate the direct effects of 17β-estradiol (E2), β-sitosterol (βS), and 4-n-nonylphenol (NP) on the synthesis of insulin-like growth factors (IGFs) and to elucidate the mechanism(s) by which EEs exert such effects. E2, βS, and NP significantly inhibited the expression of both IGF-1 and IGF-2 mRNAs in liver and gill in a time- and concentration-related manner. Although the response evoked by each EEs on the expression of IGF mRNAs was similar, the potency and efficacy varied with EE; the rank order potency/efficacy was as follows: E2 > NP > βS. The effects of EEs on the expression of IGF mRNAs was blocked by the estrogen receptor (ER) antagonist, ICI 182780. The mechanism(s) through which EEs inhibit IGF mRNA expression were investigated in isolated liver cells in vitro. EE treatment deactivated JAK, STAT, ERK, and AKT. Moreover, blockade of growth hormone (GH)-stimulated IGF expression by EE was accompanied by deactivation of JAK, STAT, ERK, and AKT. EEs also increased the expression of suppressor of cytokine signaling 2 (SOCS-2), a known inhibitor of JAK-2–an action that also was blocked by ICI 182780. These results indicate that EEs directly inhibit the expression of IGF mRNAs by disrupting GH post-receptor signaling pathways (e.g., JAK, STAT, ERK, and AKT) in an ER-dependent manner.
KW - Endocrine disruption
KW - Environmental estrogens
KW - Insulin-like growth factors
KW - Oncorhynchus mykiss
KW - Rainbow trout
KW - Suppressor of cytokine signaling
UR - http://www.scopus.com/inward/record.url?scp=85105350120&partnerID=8YFLogxK
U2 - 10.1016/j.ygcen.2021.113792
DO - 10.1016/j.ygcen.2021.113792
M3 - Article
C2 - 33872603
AN - SCOPUS:85105350120
SN - 0016-6480
VL - 309
JO - General and Comparative Endocrinology
JF - General and Comparative Endocrinology
M1 - 113792
ER -