EIGENVALUE ASSIGNMENT IN LINEAR OPTIMAL-CONTROL SYSTEMS VIA REDUCED-ORDER MODELS.

S. Vittal Rao, S. S. Lamba

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Algorithms are currently available for the solution of certain types of optimal-eigenvalue-assignment problems in which the eigenvalues of a given system are required to be shifted into preassigned locations or region while also minimizing an appropriate quadratic-performance criterion. All the known methods for a solution of the above problem are based on manipulation of the original nth-order system matrices even if only r eigenvalues (r less than n) of the original system are to be reassigned. On the contrary, the method proposed in this paper, for a solution of the above problem, employs an rth-order equivalent model, which leads to a solution via manipulation of rth-order matrices only. The method also ensures that the remaining n-r eigenvalues of the original system are not disturbed and are carried over to the resultant feedback system. It is shown that the suggested procedure brings about a considerable saving in computation time, and also requires less computer storage. Two numerical examples have been included.

Original languageEnglish
Pages (from-to)197-201
Number of pages5
JournalProceedings of the Institution of Electrical Engineers
Volume122
Issue number2
DOIs
StatePublished - 1975

Fingerprint Dive into the research topics of 'EIGENVALUE ASSIGNMENT IN LINEAR OPTIMAL-CONTROL SYSTEMS VIA REDUCED-ORDER MODELS.'. Together they form a unique fingerprint.

Cite this