TY - JOUR
T1 - Effects of Increasing Concentrations of Wet Distillers Grains With Solubles in Steam-Flaked, Corn-Based Diets on Energy Metabolism, Carbon-Nitrogen Balance, and Methane Emissions of Cattle
AU - Hales, K. E.
AU - Cole, N. A.
AU - MacDonald, J. C.
PY - 2013/2
Y1 - 2013/2
N2 - The use of wet distillers grains with solubles (WDGS) in feedlot diets has increased in the Southern Great Plains as a result of the growing ethanol industry. Nutrient balance and respiration calorimetry research evaluating the use of steam-flaked corn (SFC)-based diets in conjunction with WDGS is limited. Therefore, the effects of increasing concentrations of WDGS in a SFC-based diet on energy metabolism, C, and N balance, and enteric methane (CH4) production was evaluated in Jersey steers fed at 2 times maintenance, using respiration calorimetry chambers. Four treatments were used in two 4 × 4 Latin square designs, using 8 steers. Treatments consisted of: 1) SFC-based diet with 0% WDGS (SFC-0); 2) SFC-based diet with 15% WDGS (SFC-15); 3) SFC-based diet with 30% WDGS (SFC-30); and 4) SFC-based diet with 45% WDGS (SFC-45). Diets were balanced for degradable intake protein (DIP) by adding cottonseed meal to the SFC-0 diet. As a proportion of GE, fecal, urinary, and CH4 energy increased linearly (P < 0.03) as WDGS concentration increased in the diet. In contrast, DE, ME, and retained energy decreased linearly (P < 0.01) as a proportion of GE as WDGS concentration increased. Increasing concentration of WDGS in the diet did not affect (P > 0.78) heat production as a proportion of GE. As a result of greater N intake, total N excretion increased linearly (P < 0.01) with increasing WDGS inclusion in the diet. Fecal C loss and CH4-C respired increased linearly (P < 0.01) when WDGS concentration increased in the diet whereas CO2-C respired decreased (linear, P = 0.05) as WDGS concentration increased. We conclude that CH4 production as a proportion of GE increases linearly (P < 0.01) when WDGS concentration in the diet is increased; however, dietary inclusion of WDGS at up to 45% seems to have no effect (P > 0.78) on heat production as a proportion of GE. The reason for a linear decrease in retained energy as WDGS increased was likely because of increased fecal energy loss associated with feeding WDGS. Total N excretion, fecal C loss, and CH4-C respired increased linearly with increasing concentration of WDGS in the diet. We determined NEg values for WDGS to be 2.02, 1.61, and 1.38 Mcal/kg when included at 15%, 30%, and 45%, respectively, in a SFC-based diet. From these results we conclude that the energy value (NEg) of WDGS in a finishing cattle diet based on SFC must be decreased as the inclusion increases.
AB - The use of wet distillers grains with solubles (WDGS) in feedlot diets has increased in the Southern Great Plains as a result of the growing ethanol industry. Nutrient balance and respiration calorimetry research evaluating the use of steam-flaked corn (SFC)-based diets in conjunction with WDGS is limited. Therefore, the effects of increasing concentrations of WDGS in a SFC-based diet on energy metabolism, C, and N balance, and enteric methane (CH4) production was evaluated in Jersey steers fed at 2 times maintenance, using respiration calorimetry chambers. Four treatments were used in two 4 × 4 Latin square designs, using 8 steers. Treatments consisted of: 1) SFC-based diet with 0% WDGS (SFC-0); 2) SFC-based diet with 15% WDGS (SFC-15); 3) SFC-based diet with 30% WDGS (SFC-30); and 4) SFC-based diet with 45% WDGS (SFC-45). Diets were balanced for degradable intake protein (DIP) by adding cottonseed meal to the SFC-0 diet. As a proportion of GE, fecal, urinary, and CH4 energy increased linearly (P < 0.03) as WDGS concentration increased in the diet. In contrast, DE, ME, and retained energy decreased linearly (P < 0.01) as a proportion of GE as WDGS concentration increased. Increasing concentration of WDGS in the diet did not affect (P > 0.78) heat production as a proportion of GE. As a result of greater N intake, total N excretion increased linearly (P < 0.01) with increasing WDGS inclusion in the diet. Fecal C loss and CH4-C respired increased linearly (P < 0.01) when WDGS concentration increased in the diet whereas CO2-C respired decreased (linear, P = 0.05) as WDGS concentration increased. We conclude that CH4 production as a proportion of GE increases linearly (P < 0.01) when WDGS concentration in the diet is increased; however, dietary inclusion of WDGS at up to 45% seems to have no effect (P > 0.78) on heat production as a proportion of GE. The reason for a linear decrease in retained energy as WDGS increased was likely because of increased fecal energy loss associated with feeding WDGS. Total N excretion, fecal C loss, and CH4-C respired increased linearly with increasing concentration of WDGS in the diet. We determined NEg values for WDGS to be 2.02, 1.61, and 1.38 Mcal/kg when included at 15%, 30%, and 45%, respectively, in a SFC-based diet. From these results we conclude that the energy value (NEg) of WDGS in a finishing cattle diet based on SFC must be decreased as the inclusion increases.
KW - Cattle
KW - Distillers grains
KW - Methane
KW - Steam-flaked corn
UR - http://www.scopus.com/inward/record.url?scp=84882704724&partnerID=8YFLogxK
U2 - 10.2527/jas.2012-5418
DO - 10.2527/jas.2012-5418
M3 - Article
C2 - 23148244
AN - SCOPUS:84882704724
SN - 0021-8812
VL - 91
SP - 819
EP - 828
JO - Journal of Animal Science
JF - Journal of Animal Science
IS - 2
ER -