Effects of encapsulated methionine on skeletal muscle growth and development and subsequent feedlot performance and carcass characteristics in beef steers

Jessica O. Baggerman, Alex J. Thompson, Michael A. Jennings, Jerilyn E. Hergenreder, Whitney Rounds, Zachary K. Smith, Bradley J. Johnson

Research output: Contribution to journalArticlepeer-review

Abstract

Two studies were conducted to evaluate the effect of encapsulated methionine on live performance, carcass characteristics, and skeletal muscle development in feedlot steers. In Experiment 1, 128 crossbred steers (body weight [BW] = 341 ± 36.7 kg) were used in a randomized complete block design and supplemented with 0, 4, 8, or 12 g/(head day [d]) of ruminally protected methionine (0MET, 4MET, 8MET, and 12MET, respectively) for 111 d or 139 d. In Exp. 2, 20 steers (BW = 457 ± 58 kg) were stratified by BW and randomly assigned to either the 0MET or 8MET treatment; longissimus muscle (LM) biopsies were collected on d 0, 14, 28, 42, and 56, and analyzed for mRNA and protein expression. Additionally, immunohistochemical analysis was performed to measure fiber type area and distribution as well as the density of muscle nuclei and satellite cells (Myf5, Pax7, and Myf5/Pax7). In Experiment 1, no significant differences were observed for live performance (p ≥ 0.09). There was, however, a linear relationship between LM area and methionine supplementation (p = 0.04), with a 9% increase in the area when steers were supplemented with 12MET compared to 0MET. In Exp. 2, There were no treatment × day interactions (p ≥ 0.10) for expression of mRNA or protein abundance. Although mRNA expression and protein abundance of all genes were influenced by day (p ≤ 0.04), methionine supplementation did not have a significant effect (p ≥ 0.08). There was a significant treatment × day interaction for distribution of MHC-I fibers (p = 0.03), where 8MET supplemented cattle had a greater proportion of MHC-I fibers after 56 d of supplementation than did 0MET steers. Cross-sectional area was increased over time regardless of fiber type (p < 0.01) but was unaffected by treatment (p ≥ 0.36). While nuclei density was not impacted by treatment (p = 0.55), the density of myonuclei increased nearly 55% in 8MET supplemented cattle (p = 0.05). The density of Myf5 positive satellite cells tended to decrease with methionine supplementation (p = 0.10), while the density of Pax7 expressing cells tended to increase (p = 0.09). These results indicate that encapsulated methionine supplementation may influence markers of skeletal muscle growth, and potential improvements in the LM area may exist.

Original languageEnglish
Article number1627
JournalAnimals
Volume11
Issue number6
DOIs
StatePublished - Jun 2021

Keywords

  • Amino acid
  • Beef cattle
  • Methionine
  • Satellite cells

Fingerprint

Dive into the research topics of 'Effects of encapsulated methionine on skeletal muscle growth and development and subsequent feedlot performance and carcass characteristics in beef steers'. Together they form a unique fingerprint.

Cite this