Discrete-time host-parasitoid models with Allee effects: Density dependence versus parasitism

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

We present two general discrete-time host-parasitoid models with Allee effects on the host. In the first model, it is assumed that parasitism occurs prior to density dependence, while in the second model we assume that density dependence operates first followed by parasitism. It is shown that both models have similar asymptotic behaviour. The parasitoid population will definitely go extinct if the maximal growth rate of the host population is less than or equal to one, independent of whether density dependence or parasitism occurs first. The fate of the population is initial condition dependent if this maximal growth rate exceeds one. In particular, there exists a host population threshold, the Allee threshold, below which the host population goes extinct and so does the parasitoid. This threshold is the same for both models. Numerical examples with different functions are simulated to illustrate our analytical results.

Original languageEnglish
Pages (from-to)525-539
Number of pages15
JournalJournal of Difference Equations and Applications
Volume17
Issue number4
DOIs
StatePublished - Apr 2011

Keywords

  • Allee effect
  • Density dependence
  • Host-parasitoid model
  • Local stable manifold

Fingerprint

Dive into the research topics of 'Discrete-time host-parasitoid models with Allee effects: Density dependence versus parasitism'. Together they form a unique fingerprint.

Cite this