TY - JOUR
T1 - Discovery of an ergosterol-signaling factor that regulates Trypanosoma brucei growth
AU - Nes, William
AU - Haubrich, Brad A.
AU - Singha, Ujjal K.
AU - Miller, Matthew B.
AU - Nes, Craigen R.
AU - Anyatonwu, Hosanna
AU - Lecordier, Laurence
AU - Patkar, Presheet
AU - Leaver, David J.
AU - Villalta, Fernando
AU - Vanhollebeke, Benoit
AU - Chaudhuri, Minu
N1 - Publisher Copyright:
© 2015 by the American Society for Biochemistry and Molecular Biology Inc.
PY - 2015/2/1
Y1 - 2015/2/1
N2 - Ergosterol biosynthesis and homeostasis in the parasitic protozoan Trypanosoma brucei was analyzed by RNAi silencing and inhibition of sterol C24β -methyltransferase ( TbSMT) and sterol 14α-demethylase [ TbSDM ( TbCYP51)] to explore the functions of sterols in T. brucei growth. Inhibition of the amount or activity of these enzymes depletes ergosterol from cells at <6 fg/cell for procyclic form (PCF) cells or <0.01 fg/cell for bloodstream form (BSF) cells and reduces infectivity in a mouse model of infection. Silencing of Tb SMT expression by RNAi in PCF or BSF in combination with 25-azalanosterol (AZA) inhibited parasite growth and this inhibition was restored completely by adding synergistic cholesterol (7.8 μM from lipid-depleted media) with small amounts of ergosterol (1.2 μM) to the medium. These observations are consistent with the proposed requirement for ergosterol as a signaling factor to spark cell proliferation while imported cholesterol or the endogenously formed cholesta-5,7,24-trienol act as bulk membrane components. To test the potential chemotherapeutic importance of disrupting ergosterol biosynthesis using pairs of mechanismbased inhibitors that block two enzymes in the post-squalene segment, parasites were treated with AZA and itraconazole at 1 μM each (ED50 values) resulting in parasite death . Taken together, our results demonstrate that the ergosterol pathway is a prime drug target for intervention in T. brucei infection. -Haubrich, B. A., U. K. Singha, M. B. Miller, C. R. Nes, H. Anyatonwu, L. Lecordier, P. Patkar, D. J. Leaver, F. Villalta, B. Vanhollebeke, M. Chaudhuri, and W. D. Nes. Discovery of an ergosterol-signaling factor that regulates Trypanosoma brucei growth. J. Lipid Res. 2015.
AB - Ergosterol biosynthesis and homeostasis in the parasitic protozoan Trypanosoma brucei was analyzed by RNAi silencing and inhibition of sterol C24β -methyltransferase ( TbSMT) and sterol 14α-demethylase [ TbSDM ( TbCYP51)] to explore the functions of sterols in T. brucei growth. Inhibition of the amount or activity of these enzymes depletes ergosterol from cells at <6 fg/cell for procyclic form (PCF) cells or <0.01 fg/cell for bloodstream form (BSF) cells and reduces infectivity in a mouse model of infection. Silencing of Tb SMT expression by RNAi in PCF or BSF in combination with 25-azalanosterol (AZA) inhibited parasite growth and this inhibition was restored completely by adding synergistic cholesterol (7.8 μM from lipid-depleted media) with small amounts of ergosterol (1.2 μM) to the medium. These observations are consistent with the proposed requirement for ergosterol as a signaling factor to spark cell proliferation while imported cholesterol or the endogenously formed cholesta-5,7,24-trienol act as bulk membrane components. To test the potential chemotherapeutic importance of disrupting ergosterol biosynthesis using pairs of mechanismbased inhibitors that block two enzymes in the post-squalene segment, parasites were treated with AZA and itraconazole at 1 μM each (ED50 values) resulting in parasite death . Taken together, our results demonstrate that the ergosterol pathway is a prime drug target for intervention in T. brucei infection. -Haubrich, B. A., U. K. Singha, M. B. Miller, C. R. Nes, H. Anyatonwu, L. Lecordier, P. Patkar, D. J. Leaver, F. Villalta, B. Vanhollebeke, M. Chaudhuri, and W. D. Nes. Discovery of an ergosterol-signaling factor that regulates Trypanosoma brucei growth. J. Lipid Res. 2015.
KW - Anti-parasite drugs
KW - Cholesterol
KW - Ergosterol biosynthesis
KW - Inhibitor
KW - Knockdown
KW - Ribonucleic acid interference
KW - Sparking function
UR - http://www.scopus.com/inward/record.url?scp=84921868861&partnerID=8YFLogxK
U2 - 10.1194/jlr.M054643
DO - 10.1194/jlr.M054643
M3 - Article
C2 - 25424002
VL - 56
SP - 331
EP - 341
JO - Journal of Lipid Research
JF - Journal of Lipid Research
IS - 2
ER -