Discovery and annotation of a novel transposable element family in Gossypium

Hejun Lu, Xinglei Cui, Zhen Liu, Yuling Liu, Xingxing Wang, Zhongli Zhou, Xiaoyan Cai, Zhenmei Zhang, Xinlei Guo, Jinping Hua, Zhiying Ma, Xiyin Wang, Jinfa Zhang, Hong Zhang, Fang Liu, Kunbo Wang

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Background: Fluorescence in situ hybridization (FISH) is an efficient cytogenetic technology to study chromosome structure. Transposable element (TE) is an important component in eukaryotic genomes and can provide insights in the structure and evolution of eukaryotic genomes. Results: A FISH probe derived from bacterial artificial chromosome (BAC) clone 299N22 generated striking signals on all 26 chromosomes of the cotton diploid A genome (AA, 2x=26) but very few on the diploid D genome (DD, 2x=26). All 26 chromosomes of the A sub genome (At) of tetraploid cotton (AADD, 2n=4x=52) also gave positive signals with this FISH probe, whereas very few signals were observed on the D sub genome (Dt). Sequencing and annotation of BAC clone 299N22, revealed a novel Ty3/gypsy transposon family, which was named as 'CICR'. This family is a significant contributor to size expansion in the A (sub) genome but not in the D (sub) genome. Further FISH analysis with the LTR of CICR as a probe revealed that CICR is lineage-specific, since massive repeats were found in A and B genomic groups, but not in C-G genomic groups within the Gossypium genus. Molecular evolutionary analysis of CICR suggested that tetraploid cottons evolved after silence of the transposon family 1-1.5 million years ago (Mya). Furthermore, A genomes are more homologous with B genomes, and the C, E, F, and G genomes likely diverged from a common ancestor prior to 3.5-4 Mya, the time when CICR appeared. The genomic variation caused by the insertion of CICR in the A (sub) genome may have played an important role in the speciation of organisms with A genomes. Conclusions: The CICR family is highly repetitive in A and B genomes of Gossypium, but not amplified in the C-G genomes. The differential amount of CICR family in At and Dt will aid in partitioning sub genome sequences for chromosome assemblies during tetraploid genome sequencing and will act as a method for assessing the accuracy of tetraploid genomes by looking at the proportion of CICR elements in resulting pseudochromosome sequences. The timeline of the expansion of CICR family provides a new reference for cotton evolutionary analysis, while the impact on gene function caused by the insertion of CICR elements will be a target for further analysis of investigating phenotypic differences between A genome and D genome species.

Original languageEnglish
Article number307
JournalBMC Plant Biology
Volume18
Issue number1
DOIs
StatePublished - Nov 28 2018

Keywords

  • Allotetraploid
  • Evolution
  • FISH
  • Gossypium
  • Transposable element
  • Ty3/Gypsy

Fingerprint Dive into the research topics of 'Discovery and annotation of a novel transposable element family in Gossypium'. Together they form a unique fingerprint.

Cite this