Direct Dynamics Simulations of the 3CH2+ 3O2Reaction at High Temperature

Sandhiya Lakshmanan, Subha Pratihar, William L. Hase

Research output: Contribution to journalArticlepeer-review

Abstract

Direct dynamics simulations with the M06/6-311++G(d,p) level of theory were performed to study the 3CH2 + 3O2 reaction at 1000 K temperature on the ground state singlet surface. The reaction is complex with formation of many different product channels in highly exothermic reactions. CO, CO2, H2O, OH, H2, O, H, and HCO are the products formed from the reaction. The total simulation rate constant for the reaction at 1000 K is (1.2 ± 0.3) × 10-12 cm3 molecule-1 s-1, while the simulation rate constant at 300 K is (0.96 ± 0.28) × 10-12 cm3 molecule-1 s-1. The simulated product yields show that CO is the dominant product and the CO:CO2 ratio is 5.3:1, in good comparison with the experimental ratio of 4.3:1 at 1000 K. On comparing the product yields for the 300 and 1000 K simulations, we observed that, except for CO and H2O, the yields of the other products at 1000 K are lower at 300 K, showing a negative temperature dependence.

Original languageEnglish
Pages (from-to)621-627
Number of pages7
JournalJournal of Physical Chemistry A
Volume125
Issue number2
DOIs
StatePublished - Jan 21 2021

Fingerprint

Dive into the research topics of 'Direct Dynamics Simulations of the <sup>3</sup>CH<sub>2</sub>+ <sup>3</sup>O<sub>2</sub>Reaction at High Temperature'. Together they form a unique fingerprint.

Cite this