TY - JOUR
T1 - Direct dynamics simulation of dioxetane formation and decomposition via the singlet ·O–O–CH2–CH2· biradical
T2 - Non-RRKM dynamics
AU - Sun, Rui
AU - Park, Kyoyeon
AU - de Jong, Wibe A.
AU - Lischka, Hans
AU - Windus, Theresa L.
AU - Hase, William L.
PY - 2012/7/28
Y1 - 2012/7/28
N2 - Electronic structure calculations and direct chemical dynamics simulations are used to study the formation and decomposition of dioxetane on its ground state singlet potential energy surface. The stationary points for 1O2 + C2H4, the singlet ·O–O–CH2–CH2· biradical, the transition state (TS) connecting this biradical with dioxetane, and the two transition states and gauche ·O–CH2–CH2–O· biradical connecting dioxetane with the formaldehyde product molecules are investigated at different levels of electronic structure theory including UB3LYP, UMP2, MRMP2, and CASSCF and a range of basis sets. The UB3LYP/6-31G* method was found to give representative energies for the reactive system and was used as a model for the simulations. UB3LYP/6-31G* direct dynamics trajectories were initiated at the TS connecting the ·O–O–CH2–CH2· biradical and dioxetane by sampling the TS's vibrational energy levels, and rotational and reaction coordinate energies, with Boltzmann distributions at 300, 1000, and 1500 K. This corresponds to the transition state theory model for trajectories that pass the TS. The trajectories were directed randomly towards both the biradical and dioxetane. A small fraction of the trajectories directed towards the biradical recrossed the TS and formed dioxetane. The remainder formed 1O2 + C2H4 and of these ∼ 40% went directly from the TS to 1O2 + C2H4 without getting trapped and forming an intermediate in the ·O–O–CH2–CH2· biradical potential energy minimum, a non-statistical result. The dioxetane molecules which are formed dissociate to two formaldehyde molecules with a rate constant two orders of magnitude smaller than that predicted by Rice–Ramsperger–Kassel–Marcus theory. The reaction dynamics from dioxetane to the formaldehyde molecules do not follow the intrinsic reaction coordinate or involve trapping in the gauche ·O–CH2–CH2–O· biradical potential energy minimum. Important non-statistical dynamics are exhibited for this reactive system.
AB - Electronic structure calculations and direct chemical dynamics simulations are used to study the formation and decomposition of dioxetane on its ground state singlet potential energy surface. The stationary points for 1O2 + C2H4, the singlet ·O–O–CH2–CH2· biradical, the transition state (TS) connecting this biradical with dioxetane, and the two transition states and gauche ·O–CH2–CH2–O· biradical connecting dioxetane with the formaldehyde product molecules are investigated at different levels of electronic structure theory including UB3LYP, UMP2, MRMP2, and CASSCF and a range of basis sets. The UB3LYP/6-31G* method was found to give representative energies for the reactive system and was used as a model for the simulations. UB3LYP/6-31G* direct dynamics trajectories were initiated at the TS connecting the ·O–O–CH2–CH2· biradical and dioxetane by sampling the TS's vibrational energy levels, and rotational and reaction coordinate energies, with Boltzmann distributions at 300, 1000, and 1500 K. This corresponds to the transition state theory model for trajectories that pass the TS. The trajectories were directed randomly towards both the biradical and dioxetane. A small fraction of the trajectories directed towards the biradical recrossed the TS and formed dioxetane. The remainder formed 1O2 + C2H4 and of these ∼ 40% went directly from the TS to 1O2 + C2H4 without getting trapped and forming an intermediate in the ·O–O–CH2–CH2· biradical potential energy minimum, a non-statistical result. The dioxetane molecules which are formed dissociate to two formaldehyde molecules with a rate constant two orders of magnitude smaller than that predicted by Rice–Ramsperger–Kassel–Marcus theory. The reaction dynamics from dioxetane to the formaldehyde molecules do not follow the intrinsic reaction coordinate or involve trapping in the gauche ·O–CH2–CH2–O· biradical potential energy minimum. Important non-statistical dynamics are exhibited for this reactive system.
UR - http://www.scopus.com/inward/record.url?scp=85024774494&partnerID=8YFLogxK
U2 - 10.1063/1.4736843
DO - 10.1063/1.4736843
M3 - Article
C2 - 22852616
AN - SCOPUS:85024774494
VL - 137
SP - 242
EP - 483
JO - The Journal of Chemical Physics
JF - The Journal of Chemical Physics
SN - 0021-9606
IS - 4
ER -