Direct dynamic approach to stress development in bone

Yssa DeWoody, Clyde F. Martin, Lawrence Schovanec

Research output: Contribution to journalConference articlepeer-review

1 Scopus citations

Abstract

This research provides a method for relating neural controls and musculotendon dynamics to the development of stress in skeletal elements in the lower extremities. Gait simulations are carried out by implementing a seven-link, eight degree of freedom model of the human body that is controlled by various muscle groups on each leg. Hill-type models of muscles are utilized with activation and contraction dynamics controlled by neural inputs. This direct-dynamic approach provides a predictive and analytical method for determining exact muscle forces exerted by each musculotendon throughout the gait cycle as well joint torques and reaction forces. These forces are utilized as the boundary inputs in a stress analysis of the skeletal elements. By this approach stress and strain computed by a finite element analysis are related to musculoskeletal dynamics and neuromuscular control.

Original languageEnglish
Pages (from-to)2474-2477
Number of pages4
JournalAnnual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings
Volume5
StatePublished - 1998
EventProceedings of the 1998 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Part 4 (of 6) - Hong Kong, China
Duration: Oct 29 1998Nov 1 1998

Fingerprint Dive into the research topics of 'Direct dynamic approach to stress development in bone'. Together they form a unique fingerprint.

Cite this