Dietary supplementation of gingerols- and shogaols-enriched ginger root extract attenuate pain-associated behaviors while modulating gut microbiota and metabolites in rats with spinal nerve ligation

Chwan Li Shen, Rui Wang, Guangchen Ji, Moamen M. Elmassry, Masoud Zabet-Moghaddam, Heather Vellers, Abdul N. Hamood, Xiaoxia Gong, Parvin Mirzaei, Shengmin Sang, Volker Neugebauer

Research output: Contribution to journalArticlepeer-review

Abstract

Neuroinflammation is a central factor in neuropathic pain (NP). Ginger is a promising bioactive compound in NP management due to its anti-inflammatory property. Emerging evidence suggests that gut microbiome and gut-derived metabolites play a key role in NP. We evaluated the effects of two ginger root extracts rich in gingerols (GEG) and shogaols (SEG) on pain sensitivity, anxiety-like behaviors, circulating cell-free mitochondrial DNA (ccf-mtDNA), gut microbiome composition, and fecal metabolites in rats with NP. Sixteen male rats were divided into four groups: sham, spinal nerve ligation (SNL), SNL+0.75%GEG in diet, and SNL+0.75%SEG in diet groups for 30 days. Compared to SNL group, both SNL+GEG and SNL+SEG groups showed a significant reduction in pain- and anxiety-like behaviors, and ccf-mtDNA level. Relative to the SNL group, both SNL+GEG and SNL+SEG groups increased the relative abundance of Lactococcus, Sellimonas, Blautia, Erysipelatoclostridiaceae, and Anaerovoracaceae, but decreased that of Prevotellaceae UCG-001, Rikenellaceae RC9 gut group, Mucispirillum and Desulfovibrio, Desulfovibrio, Anaerofilum, Eubacterium siraeum group, RF39, UCG-005, Lachnospiraceae NK4A136 group, Acetatifactor, Eubacterium ruminantium group, Clostridia UCG-014, and an uncultured Anaerovoracaceae. GEG and SEG had differential effects on gut-derived metabolites. Compared to SNL group, SNL+GEG group had higher level of 1′-acetoxychavicol acetate, (4E)-1,7-Bis(4-hydroxyphenyl)-4-hepten-3-one, NP-000629, 7,8-Dimethoxy-3-(2-methyl-3-buten-2-yl)-2H-chromen-2-one, 3-{[4-(2-Pyrimidinyl)piperazino]carbonyl}-2-pyrazinecarboxylic acid, 920863, and (1R,3R,7R,13S)-13-Methyl-6-methylene-4,14,16-trioxatetracyclo[11.2.1.0∼1,10∼.0∼3,7∼]hexadec-9-en-5-one, while SNL+SEG group had higher level for (±)-5-[(tert-Butylamino)-2′-hydroxypropoxy]-1_2_3_4-tetrahydro-1-naphthol and dehydroepiandrosteronesulfate. In conclusion, ginger is a promising functional food in the management of NP, and further investigations are necessary to assess the role of ginger on gut-brain axis in pain management.

Original languageEnglish
Article number108904
JournalJournal of Nutritional Biochemistry
Volume100
DOIs
StatePublished - Feb 2022

Keywords

  • Bioactive compound
  • animals
  • anxiety
  • fecal metabolites
  • gut microbiome
  • neuropathic pain

Fingerprint

Dive into the research topics of 'Dietary supplementation of gingerols- and shogaols-enriched ginger root extract attenuate pain-associated behaviors while modulating gut microbiota and metabolites in rats with spinal nerve ligation'. Together they form a unique fingerprint.

Cite this