Deflagration analysis of aluminum droplet combustion

Birce Dikici, M. L. Pantoya, B. D. Shaw

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The evaporation and combustion of nanometric aluminum particles with an oxidizer MoO3 is analyzed. The analysis was performed to correlate individual Al particle gasification rates to macroscopic flame propagation rates observed in flame tube experiments. Examination of various characteristic times relevant to propagation of a deflagration reveals that particles below about 1.7 nm in diameter evaporate before appreciable chemical reactions occur. Experimental studies use Al particles greater than 1.7 nm in diameter such that a diffusion flame model was developed to better understand the combustion dynamics of multiphase Al particles. The results showed that it is unlikely that droplets will fully evaporate before reacting in the gas phase. A droplet evaporation and combustion model was further applied to quantify single droplet reaction velocities in comparison to the bulk flame propagation measurements observed in the literature. The diffusion flame model predicted orders of magnitude slower propagation rates than experimentally observed. These results imply that another reaction mechanism is responsible for promoting reaction propagation or modes other than diffusion play a more dominant role in flame propagation.

Original languageEnglish
Title of host publicationASME 2012 Heat Transfer Summer Conf. Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
Pages263-271
Number of pages9
DOIs
StatePublished - 2012
EventASME 2012 Heat Transfer Summer Conference Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012 - Rio Grande, Puerto Rico
Duration: Jul 8 2012Jul 12 2012

Publication series

NameASME 2012 Heat Transfer Summer Conf. Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
Volume2

Conference

ConferenceASME 2012 Heat Transfer Summer Conference Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
CountryPuerto Rico
CityRio Grande
Period07/8/1207/12/12

Keywords

  • Aluminum combustion
  • Deflagration
  • Free molecular flow
  • Nanoparticles
  • Reaction times

Fingerprint Dive into the research topics of 'Deflagration analysis of aluminum droplet combustion'. Together they form a unique fingerprint.

  • Cite this

    Dikici, B., Pantoya, M. L., & Shaw, B. D. (2012). Deflagration analysis of aluminum droplet combustion. In ASME 2012 Heat Transfer Summer Conf. Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012 (pp. 263-271). (ASME 2012 Heat Transfer Summer Conf. Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012; Vol. 2). https://doi.org/10.1115/HT2012-58553