TY - JOUR
T1 - De novo assembly of a chromosome-scale reference genome for the northern flicker Colaptes auratus
AU - Hruska, Jack P.
AU - Manthey, Joseph
N1 - Funding Information:
We would like to thank Christopher Witt and Andrew Johnson at the Museum of Southwestern Biology for granting access to the tissue sample used in this study. We thank Mohamed Fokar at the Texas Tech Center for Biotechnology and Genomics for assistance with Hi-C sequencing. Sequencing was supported by Texas Tech University start-up funding to J.D.M. The Texas Tech University High Performance Computing Center supported most of the computational analyses. J.P.H. and J.D.M. both performed analyses and wrote, reviewed, and approved the manuscript.
Publisher Copyright:
© The Author(s) 2020. Published by Oxford University Press on behalf of Genetics Society of America.
PY - 2021/1/26
Y1 - 2021/1/26
N2 - The northern flicker, Colaptes auratus, is a widely distributed North American woodpecker and a long-standing focal species for the study of ecology, behavior, phenotypic differentiation, and hybridization. We present here a highly contiguous de novo genome assembly of C. auratus, the first such assembly for the species and the first published chromosome-level assembly for woodpeckers (Picidae). The assembly was generated using a combination of short-read Chromium 10× and long-read PacBio sequencing, and further scaffolded with chromatin conformation capture (Hi-C) reads. The resulting genome assembly is 1.378 Gb in size, with a scaffold N50 of 11 and a scaffold L50 of 43.948 Mb. This assembly contains 87.4-91.7% of genes present across four sets of universal single-copy orthologs found in tetra-pods and birds. We annotated the assembly both for genes and repetitive content, identifying 18,745 genes and a prevalence of ∼28.0% repetitive elements. Lastly, we used fourfold degenerate sites from neutrally evolving genes to estimate a mutation rate for C. auratus, which we estimated to be 4.007 × 10-9 substitutions/site/year, about 1.5× times faster than an earlier mutation rate estimate of the family. The highly contiguous assembly and annotations we report will serve as a resource for future studies on the genomics of C. auratus and comparative evolution of woodpeckers.
AB - The northern flicker, Colaptes auratus, is a widely distributed North American woodpecker and a long-standing focal species for the study of ecology, behavior, phenotypic differentiation, and hybridization. We present here a highly contiguous de novo genome assembly of C. auratus, the first such assembly for the species and the first published chromosome-level assembly for woodpeckers (Picidae). The assembly was generated using a combination of short-read Chromium 10× and long-read PacBio sequencing, and further scaffolded with chromatin conformation capture (Hi-C) reads. The resulting genome assembly is 1.378 Gb in size, with a scaffold N50 of 11 and a scaffold L50 of 43.948 Mb. This assembly contains 87.4-91.7% of genes present across four sets of universal single-copy orthologs found in tetra-pods and birds. We annotated the assembly both for genes and repetitive content, identifying 18,745 genes and a prevalence of ∼28.0% repetitive elements. Lastly, we used fourfold degenerate sites from neutrally evolving genes to estimate a mutation rate for C. auratus, which we estimated to be 4.007 × 10-9 substitutions/site/year, about 1.5× times faster than an earlier mutation rate estimate of the family. The highly contiguous assembly and annotations we report will serve as a resource for future studies on the genomics of C. auratus and comparative evolution of woodpeckers.
M3 - Article
AN - SCOPUS:85100972751
JO - Default journal
JF - Default journal
ER -