TY - GEN
T1 - Damage detection of composite materials using data fusion with deep neural networks
AU - Dabetwar, Shweta
AU - Ekwaro-Osire, Stephen
AU - Dias, João Paulo
N1 - Publisher Copyright:
Copyright © 2020 ASME
PY - 2020
Y1 - 2020
N2 - Composite materials have enormous applications in various fields. Thus, it is important to have an efficient damage detection method to avoid catastrophic failures. Due to the existence of multiple damage modes and the availability of data in different formats, it is important to employ efficient techniques to consider all the types of damage. Deep neural networks were seen to exhibit the ability to address similar complex problems. The research question in this work is 'Can data fusion improve damage classification using the convolutional neural network?' The specific aims developed were to 1) assess the performance of image encoding algorithms, 2) classify the damage using data from separate experimental coupons, and 3) classify the damage using mixed data from multiple experimental coupons. Two different experimental measurements were taken from NASA Ames Prognostic Repository for Carbon Fiber Reinforced polymer. To use data fusion, the piezoelectric signals were converted into images using Gramian Angular Field (GAF) and Markov Transition Field. Using data fusion techniques, the input dataset was created for a convolutional neural network with three hidden layers to determine the damage states. The accuracies of all the image encoding algorithms were compared. The analysis showed that data fusion provided better results as it contained more information on the damages modes that occur in composite materials. Additionally, GAF was shown to perform the best. Thus, the combination of data fusion and deep neural network techniques provides an efficient method for damage detection of composite materials.
AB - Composite materials have enormous applications in various fields. Thus, it is important to have an efficient damage detection method to avoid catastrophic failures. Due to the existence of multiple damage modes and the availability of data in different formats, it is important to employ efficient techniques to consider all the types of damage. Deep neural networks were seen to exhibit the ability to address similar complex problems. The research question in this work is 'Can data fusion improve damage classification using the convolutional neural network?' The specific aims developed were to 1) assess the performance of image encoding algorithms, 2) classify the damage using data from separate experimental coupons, and 3) classify the damage using mixed data from multiple experimental coupons. Two different experimental measurements were taken from NASA Ames Prognostic Repository for Carbon Fiber Reinforced polymer. To use data fusion, the piezoelectric signals were converted into images using Gramian Angular Field (GAF) and Markov Transition Field. Using data fusion techniques, the input dataset was created for a convolutional neural network with three hidden layers to determine the damage states. The accuracies of all the image encoding algorithms were compared. The analysis showed that data fusion provided better results as it contained more information on the damages modes that occur in composite materials. Additionally, GAF was shown to perform the best. Thus, the combination of data fusion and deep neural network techniques provides an efficient method for damage detection of composite materials.
KW - Composite materials
KW - Convolutional neural network
KW - Damage detection
KW - Data fusion
KW - Deep neural network
UR - http://www.scopus.com/inward/record.url?scp=85099886769&partnerID=8YFLogxK
U2 - 10.1115/GT2020-15097
DO - 10.1115/GT2020-15097
M3 - Conference contribution
AN - SCOPUS:85099886769
T3 - Proceedings of the ASME Turbo Expo
BT - Structures and Dynamics
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, GT 2020
Y2 - 21 September 2020 through 25 September 2020
ER -