TY - JOUR
T1 - Daidzein and the daidzein metabolite, equol, enhance adipocyte differentiation and PPARγ transcriptional activity
AU - Cho, Kae Won
AU - Lee, Ok Hwan
AU - Banz, William J.
AU - Moustaid-Moussa, Naima
AU - Shay, Neil F.
AU - Kim, Young Cheul
PY - 2010/9
Y1 - 2010/9
N2 - Dietary soy isoflavones have been shown to favorably alter the metabolic phenotypes associated with Type 2 diabetes. However, the identification of direct targets and the underlying molecular mechanisms by which soy isoflaovones exert antidiabetic effects remain elusive. Since the insulin-sensitizing effects of thiazolidinediones, antidiabetic drugs, are mediated through activation of peroxisome proliferators-activated receptor gamma (PPARγ), we examined the effects of daidzein and the daidzein metabolite, equol, on adipocyte differentiation and PPARγ activation. In 3T3-L1 cells, daidzein enhanced adipocyte differentiation and PPARγ expression in a dose-dependent manner. Daidzein also dose-dependently increased insulin-stimulated glucose uptake and the relative abundance of insulin-responsive glucose transporter 4 (GLUT4) and insulin receptor substrate 1 (IRS-1) mRNA. In C3H10T1/2 cells, both daidzein and equol at 1 μmol/L and higher significantly increased adipocyte differentiation and insulin-stimulated glucose uptake. Furthermore, daidzein and equol up-regulated PPARγ-mediated transcriptional activity, and daidzein restored the PPARγ antagonist-induced inhibition of aP2 and GLUT4 mRNA levels. Our results indicate that daidzein enhances insulin-stimulated glucose uptake in adipocytes by increasing the expression of GLUT4 and IRS-1 via the activation of PPARγ. These data further support the recent findings that favorable effects of dietary soy isoflavones may be attributable to daidzein and its metabolite equol.
AB - Dietary soy isoflavones have been shown to favorably alter the metabolic phenotypes associated with Type 2 diabetes. However, the identification of direct targets and the underlying molecular mechanisms by which soy isoflaovones exert antidiabetic effects remain elusive. Since the insulin-sensitizing effects of thiazolidinediones, antidiabetic drugs, are mediated through activation of peroxisome proliferators-activated receptor gamma (PPARγ), we examined the effects of daidzein and the daidzein metabolite, equol, on adipocyte differentiation and PPARγ activation. In 3T3-L1 cells, daidzein enhanced adipocyte differentiation and PPARγ expression in a dose-dependent manner. Daidzein also dose-dependently increased insulin-stimulated glucose uptake and the relative abundance of insulin-responsive glucose transporter 4 (GLUT4) and insulin receptor substrate 1 (IRS-1) mRNA. In C3H10T1/2 cells, both daidzein and equol at 1 μmol/L and higher significantly increased adipocyte differentiation and insulin-stimulated glucose uptake. Furthermore, daidzein and equol up-regulated PPARγ-mediated transcriptional activity, and daidzein restored the PPARγ antagonist-induced inhibition of aP2 and GLUT4 mRNA levels. Our results indicate that daidzein enhances insulin-stimulated glucose uptake in adipocytes by increasing the expression of GLUT4 and IRS-1 via the activation of PPARγ. These data further support the recent findings that favorable effects of dietary soy isoflavones may be attributable to daidzein and its metabolite equol.
KW - Adipocyte differentiation
KW - Daidzein
KW - Equol
KW - GLUT4
KW - Insulin sensitivity
KW - PPARγ
UR - http://www.scopus.com/inward/record.url?scp=77955845051&partnerID=8YFLogxK
U2 - 10.1016/j.jnutbio.2009.06.012
DO - 10.1016/j.jnutbio.2009.06.012
M3 - Article
C2 - 19775880
AN - SCOPUS:77955845051
SN - 0955-2863
VL - 21
SP - 841
EP - 847
JO - Journal of Nutritional Biochemistry
JF - Journal of Nutritional Biochemistry
IS - 9
ER -