Critical appraisal of excited state nonadiabatic dynamics simulations of 9H-adenine

Mario Barbatti, Zhenggang Lan, Rachel Crespo-Otero, Jaroslaw J. Szymczak, Hans Lischka, Walter Thiel

Research output: Contribution to journalArticlepeer-review

96 Scopus citations


In spite of the importance of nonadiabatic dynamics simulations for the understanding of ultrafast photo-induced phenomena, simulations based on different methodologies have often led to contradictory results. In this work, we proceed through a comprehensive investigation of on-the-fly surface-hopping simulations of 9H-adenine in the gas phase using different electronic structure theories (ab initio, semi-empirical, and density functional methods). Simulations that employ ab initio and semi-empirical multireference configuration interaction methods predict the experimentally observed ultrafast deactivation of 9H-adenine with similar time scales, however, through different internal conversion channels. Simulations based on time-dependent density functional theory with six different hybrid and range-corrected functionals fail to predict the ultrafast deactivation. The origin of these differences is analyzed by systematic calculations of the relevant reaction pathways, which show that these discrepancies can always be traced back to topographical features of the underlying potential energy surfaces.

Original languageEnglish
Article number22A503
JournalJournal of Chemical Physics
Issue number22
StatePublished - Dec 14 2012


Dive into the research topics of 'Critical appraisal of excited state nonadiabatic dynamics simulations of 9H-adenine'. Together they form a unique fingerprint.

Cite this