### Abstract

We discuss a one-parameter family of transformations that changes sets and functions continuously into their (k, n)-Steiner symmetrizations. Our construction consists of two stages. First, we employ a continuous symmetrization introduced by the author in 1990 to transform sets and functions into their one-dimensional Steiner symmetrization. Some of our proofs at this stage rely on a simple rearrangement called polarization. At the second stage, we use an approximation theorem due to Blaschke and Sarvas to give an inductive definition of the continuous (k, n)-Steiner symmetrization for any 2 ≤ k ≤ n. This transformation provides us with the desired continuous path along which all basic characteristics of sets and functions vary monotonically. In its turn, this leads to continuous versions of several convolution type inequalities and Dirichlet's type inequalities as well as to continuous versions of comparison theorems for solutions of some elliptic and parabolic partial differential equations.

Original language | English |
---|---|

Pages (from-to) | 117-166 |

Number of pages | 50 |

Journal | St. Petersburg Mathematical Journal |

Volume | 24 |

Issue number | 1 |

DOIs | |

State | Published - Jan 1 2013 |

### Fingerprint

### Keywords

- Boundary-value problem
- Comparison theorem
- Continuous symmetrization
- Integral inequality
- Polarization
- Rearrangement
- Steiner symmetrization