Continuous shifts in the active set of spinal interneurons during changes in locomotor speed

David L. McLean, Mark A. Masino, Ingrid Y.Y. Koh, W. Brent Lindquist, Joseph R. Fetcho

Research output: Contribution to journalArticle

160 Scopus citations

Abstract

The classic 'size principle' of motor control describes how increasingly forceful movements arise by the recruitment of motoneurons of progressively larger size and force output into the active pool. We explored the activity of pools of spinal interneurons in larval zebrafish and found that increases in swimming speed were not associated with the simple addition of cells to the active pool. Instead, the recruitment of interneurons at faster speeds was accompanied by the silencing of those driving movements at slower speeds. This silencing occurred both between and within classes of rhythmically active premotor excitatory interneurons. Thus, unlike motoneurons, there is a continuous shift in the set of cells driving the behavior, even though changes in the speed of the movements and the frequency of the motor pattern appear to be smoothly graded. We conclude that fundamentally different principles may underlie the recruitment of motoneuron and interneuron pools.

Original languageEnglish
Pages (from-to)1419-1429
Number of pages11
JournalNature Neuroscience
Volume11
Issue number12
DOIs
StatePublished - Dec 2008

Fingerprint Dive into the research topics of 'Continuous shifts in the active set of spinal interneurons during changes in locomotor speed'. Together they form a unique fingerprint.

  • Cite this