Continuous authentication of smartphone users by fusing typing, swiping, and phone movement patterns

Rajesh Kumar, Vir V. Phoha, Abdul Serwadda, Abdul Serwadda

Research output: Contribution to conferencePaper

Abstract

We studied the fusion of three biometric authentication modalities, namely, swiping gestures, typing patterns and the phone movement patterns observed during typing or swiping. A web browser was customized to collect the data generated from the aforementioned modalities over four to seven days in an unconstrained environment. Several features were extracted by using sliding window mechanism for each modality and analyzed by using information gain, correlation, and symmetric uncertainty. Finally, five features from windows of continuous swipes, thirty features from windows of continuously typed letters, and nine features from corresponding phone movement patterns while swiping/typing were used to build the authentication system. We evaluated the performance of each modality and their fusion over a dataset of 28 users. The feature-level fusion of swiping and the corresponding phone movement patterns achieved an authentication accuracy of 93.33%, whereas, the score-level fusion of typing behaviors and the corresponding phone movement patterns achieved an authentication accuracy of 89.31 %.
Original languageEnglish
StatePublished - Sep 2016

    Fingerprint

Cite this