Continuous and high throughput production of alginate fibers using co-flow in a millifluidic T-junction

G. Pendyala, S. S. Bithi, S. A. Vanapalli, G. E. Fernandes

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

We present a new technique for continuous production of alginate fibers using off-the-shelf millifluidic components and syringe pumps. The components are quickly assembled to form a T-junction to deliver co-flowing streams of sodium alginate and calcium chloride allowing formation of hydrogel fibers in the exit channel. We vary the flow rates of the two streams, calcium chloride concentrations and length of exit channel and identify conditions where fibers of uniform and nonuniform thickness are produced. We find that uniform fibers can be produced at a maximum total flow rate of 10 mL min−1. As expected, for uniform fibers, we observe that the fiber diameter increases with increase in alginate solution flow rate, and we propose a simple model that predicts the fiber diameter as a function of flow rate ratio. We investigate the source of fiber nonuniformity and explain it using an empirical model that involves crosslinking time and gel strength. Our approach features easy device assembly and operation and enables continuous fiber production without clogging risks. Fiber production rates in the order of 10 m min−1 are achievable using our approach.

Original languageEnglish
Article number47120
JournalJournal of Applied Polymer Science
Volume136
Issue number9
DOIs
StatePublished - Mar 5 2019

Keywords

  • T-junction
  • alignate
  • fiber
  • hydrogel

Fingerprint Dive into the research topics of 'Continuous and high throughput production of alginate fibers using co-flow in a millifluidic T-junction'. Together they form a unique fingerprint.

Cite this