TY - JOUR
T1 - Comparison of hydrophilic PVA/TiO2and hydrophobic PVDF/TiO2microfiber webs on the dye pollutant photo-catalyzation
AU - Lou, Lihua
AU - Kendall, Ronald J.
AU - Ramkumar, Seshadri
N1 - Publisher Copyright:
© 2020 Elsevier Ltd.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/10
Y1 - 2020/10
N2 - In this paper, hydrophilic PVA/TiO2 and hydrophobic PVDF/TiO2 microfibrous webs with varied TiO2 concentrations (0 %, 1 %, 3 %, 5 %, 10 %, and 20 %) were produced by the electrospinning technique. UV-vis spectrums were tested to demonstrate the photocatalytic properties of PVA/TiO2 and PVDF/TiO2 webs under visible light. Overall, PVDF/TiO2 exhibits higher Rhodamine B (RhB) decomposition efficiency than PVA/TiO2 samples. Specifically, RhB of around 50 % and 80 % were degraded by 13 d and 49 d for PVA/TiO2 samples with TiO2 of 10 %. RhB of around 50 % and 100 % were degraded at 3 h and 49 d for PVDF/TiO2 samples with TiO2 of 10 % and 20 %. Furthermore, the degradation rate for PVA/TiO2 and PVDF/TiO2 with TiO2 of 10 % is around 0.11 and 0.23. The difference in RhB photodegradation mechanism of PVA/TiO2 and PVDF/TiO2 webs was described and discussed in this paper. Hydrophobic PVDF/TiO2 was suspended in RhB liquid and ensured maximum contact between RhB pollutants and TiO2, whereas PVA/TiO2 completely dissolved in RhB liquid, which decreased the contact area and caused secondary pollution. In conclusion, hydrophobic PVDF/TiO2 webs with TiO2 of 10 % were suitable candidates for RhB photodegradation compared to PVA/ TiO2 webs.
AB - In this paper, hydrophilic PVA/TiO2 and hydrophobic PVDF/TiO2 microfibrous webs with varied TiO2 concentrations (0 %, 1 %, 3 %, 5 %, 10 %, and 20 %) were produced by the electrospinning technique. UV-vis spectrums were tested to demonstrate the photocatalytic properties of PVA/TiO2 and PVDF/TiO2 webs under visible light. Overall, PVDF/TiO2 exhibits higher Rhodamine B (RhB) decomposition efficiency than PVA/TiO2 samples. Specifically, RhB of around 50 % and 80 % were degraded by 13 d and 49 d for PVA/TiO2 samples with TiO2 of 10 %. RhB of around 50 % and 100 % were degraded at 3 h and 49 d for PVDF/TiO2 samples with TiO2 of 10 % and 20 %. Furthermore, the degradation rate for PVA/TiO2 and PVDF/TiO2 with TiO2 of 10 % is around 0.11 and 0.23. The difference in RhB photodegradation mechanism of PVA/TiO2 and PVDF/TiO2 webs was described and discussed in this paper. Hydrophobic PVDF/TiO2 was suspended in RhB liquid and ensured maximum contact between RhB pollutants and TiO2, whereas PVA/TiO2 completely dissolved in RhB liquid, which decreased the contact area and caused secondary pollution. In conclusion, hydrophobic PVDF/TiO2 webs with TiO2 of 10 % were suitable candidates for RhB photodegradation compared to PVA/ TiO2 webs.
KW - Electrospinning
KW - Microfiber
KW - Nanoparticles
KW - Photo-catalyzation
KW - Titanium dioxide
UR - http://www.scopus.com/inward/record.url?scp=85090960378&partnerID=8YFLogxK
U2 - 10.1016/j.jece.2020.103914
DO - 10.1016/j.jece.2020.103914
M3 - Article
AN - SCOPUS:85090960378
VL - 8
JO - Journal of Environmental Chemical Engineering
JF - Journal of Environmental Chemical Engineering
SN - 2213-3437
IS - 5
M1 - 103914
ER -