ComModeler: Topic Modeling Using Community Detection

Tommy Dang, Vinh Nguyen

Research output: Contribution to conferencePaperpeer-review

Abstract

This paper introduces ComModeler, a novel approach for topic modeling using community finding in dynamic networks. Our algorithm first extracts the terms/keywords, formulates a network of collocated terms, then refines the network based on various features (such as term/relationship frequency, sudden changes in their frequency time series, or vertex betweenness centrality) to reveal the structures/communities in dynamic social networks. These communities correspond to different hidden topics in the input text documents. Although initially motivated to analyze text documents, we soon realized the ComModeler has more general implications for other application domains. We demonstrate the ComModeler on several real-world datasets, including the IEEE VIS publications from 1990 to 2016, together with collocated phrases obtained from various political blogs.
Original languageEnglish
DOIs
StatePublished - Jul 8 2018

Fingerprint

Dive into the research topics of 'ComModeler: Topic Modeling Using Community Detection'. Together they form a unique fingerprint.

Cite this