Clay-mineral formation in soils developed in the weathering zone of pyrite-bearing schists: A case study from the abandoned pyrite mine in Wieściszowice, Lower Silesia, SW Poland

Łukasz Uzarowicz, Stefan Skiba, Michał Skiba, Branimir Šegvić

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Intense mineral transformations that produce acid soils from weathering zones of pyritebearing rocks, including alterations of layer silicates, are of critical importance to agricultural andenvironmental interests in various regions of the world. To date, the transformations of layer silicates in these soils have not been studied in detail. The aim of the present investigation was to examine the weathering pathways controlling processes of clay-mineral formation in acidic soils developed near the abandoned pyrite mine in Wieściszowice (Lower Silesia, SW Poland). A sequence of soils, from weakly developed technogenic soils (located on the mine dumps) to well developed natural soils, was selected. Bulk soil material and separated clay fractions were analyzed using X-ray diffractometry, Fouriertransform infrared spectroscopy, and scanning electron microscopy-energy dispersive spectrometry. The profiles analyzed were developed on pyrite-bearing schists containing trioctahedral Mg,Fe-chlorite and dioctahedral micas (muscovite and paragonite). Because of pyrite weathering, all the soils studied were strongly acidic (pH 2.84.4). Inherited chlorite and micas (K- and Na-mica) predominated in the clay fractions of soils developed on the mine dumps, whereas clays from natural soils were rich in pedogenic minerals (i.e. smectite, vermiculite, and mixed-layer minerals containing hydrated interlayers). The formation of both vermiculite and smectite at the expense of chlorite was observed in the soils studied. The transformation probably led to smectite formation via intermediate stages of mixed-layer minerals (i.e.chlorite-vermiculite, chlorite-smectite, and/or vermiculite-smectite). The process of chlorite dissolution took place simultaneously with the transformation. Micas were mainly transformed to smectite and mixedlayer mica-smectite. Neoformation of kaolinite occurring in A horizons of the soils investigated was also documented. Metal-hydroxy interlayers in Bw horizons of well developed soils were found. The process of interlayer development appeared to be pH dependent and took place at pH ≥4.2. The processes of claymineral formation in soils developed in the weathering zone of a pyrite-bearing schist are similar to those occurring in podzols (Spodosols).

Original languageEnglish
Pages (from-to)581-594
Number of pages14
JournalClays and Clay Minerals
Volume59
Issue number6
DOIs
StatePublished - Dec 2011

Keywords

  • Acid sulfate weathering
  • Acidic soils
  • Hydroxy interlayers
  • Kaolinite
  • Mixed-layer minerals
  • Pyrite weathering
  • Schists
  • Smectite
  • Vermiculite

Fingerprint Dive into the research topics of 'Clay-mineral formation in soils developed in the weathering zone of pyrite-bearing schists: A case study from the abandoned pyrite mine in Wieściszowice, Lower Silesia, SW Poland'. Together they form a unique fingerprint.

Cite this