Central regulation of branched-chain amino acids is mediated by AgRP neurons

Andrew Shin, Ritchel B. Gannaban, Cherl Namkoong, Henry H. Ruiz, Hyung Jin Choi

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Circulating branched-chain amino acids (BCAAs) are elevated in obesity and diabetes, and recent studies support a causal role for BCAAs in insulin resistance and defective glycemic control. The physiological mechanisms under-lying BCAA regulation are poorly understood. Here we show that insulin signaling in the mediobasal hypotha-lamus (MBH) of rats is mandatory for lowering plasma BCAAs, most probably by inducing hepatic BCAA catab-olism. Insulin receptor deletion only in agouti-related protein (AgRP)–expressing neurons (AgRP neurons) in the MBH impaired hepatic BCAA breakdown and suppression of plasma BCAAs during hyperinsulinemic clamps in mice. In support of this, chemogenetic stimulation of AgRP neurons in the absence of food significantly raised plasma BCAAs and impaired hepatic BCAA degradation. A pro-longed fasting or ghrelin treatment recapitulated designer receptors exclusively activated by designer drugs–induced activation of AgRP neurons and increased plasma BCAAs. Acute stimulation of vagal motor neurons in the dorsal motor nucleus was sufficient to decrease plasma BCAAs. Notably, elevated plasma BCAAs were associated with impaired glucose homeostasis. These findings suggest a critical role of insulin signaling in AgRP neurons for BCAA regulation and raise the possibility that this control may be mediated primarily via vagal outflow. Further-more, our results provide an opportunity to closely exam-ine the potential mechanistic link between central nervous system–driven BCAA control and glucose homeostasis.

Original languageEnglish
Pages (from-to)62-75
Number of pages14
JournalDiabetes
Volume70
Issue number1
DOIs
StatePublished - Jan 1 2021

Fingerprint

Dive into the research topics of 'Central regulation of branched-chain amino acids is mediated by AgRP neurons'. Together they form a unique fingerprint.

Cite this