Calculation of air temperature and pressure history During the operation of a flux compression generator

Xiaobin Le, Jahan Rasty, Andreas Neuber, Jim Dickens, Magne Kristiansen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

During the operation of Magnetic Flux Compression Generators (MFCG), the gas-plasma, shocked by the rapidly expanding armature, could lead to electrical arcing across the gas between the armature and the stator at locations where physical contact between the armature and stator has not yet occurred. This will result in a loss of magnetic flux and a decrease in the electrical efficiency of the MFCG. Therefore, knowledge of the ensuing gas temperature and pressure histories is necessary for identification of loss mechanisms in an effort to optimize the efficiency of MFCGs. This paper describes the procedure for estimating the air temperature and pressure histories via Finite Element (FE) simulation of the armature expansion and its ensuing contact with the stator in an MFCG. First, the validity of the FE model was verified by comparing deformation contours obtained from the simulations to those obtained experimentally via high-speed photography. Utilizing the pressure history data obtained from the FE results, the air temperature was theoretically calculated. The results indicate that the air pressure and temperature in an MFCG, having a compression ratio of 1.8, could be as high as 30 MPa and 4000° Kelvin, respectively.

Original languageEnglish
Title of host publicationPPPS 2001 - Pulsed Power Plasma Science 2001
EditorsRobert Reinovsky, Mark Newton
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages939-942
Number of pages4
ISBN (Electronic)0780371208, 9780780371200
DOIs
StatePublished - 2001
Event28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference, PPPS 2001 - Las Vegas, United States
Duration: Jun 17 2001Jun 22 2001

Publication series

NamePPPS 2001 - Pulsed Power Plasma Science 2001
Volume2

Conference

Conference28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference, PPPS 2001
Country/TerritoryUnited States
CityLas Vegas
Period06/17/0106/22/01

Fingerprint

Dive into the research topics of 'Calculation of air temperature and pressure history During the operation of a flux compression generator'. Together they form a unique fingerprint.

Cite this