Bioaccumulation of fullerene (C60) and corresponding catalase elevation in Lumbriculus variegatus

Jiafan Wang, Mike Wages, Shuangying Yu, Jonathan D. Maul, Greg Mayer, Louisa Hope-Weeks, George P. Cobb

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Fullerene (C60), with its unique physical properties and nanometer size, has been mass-produced for many applications in recent decades. The increased likelihood of direct release into the environment has raised interest in understanding both the environmental fate and corresponding biological effects of fullerenes to living organisms. Because few studies have emphasized fullerene uptake and resulting biochemical responses by living organisms, a toxicity screening test and a 28-d bioaccumulation test for Lumbriculus variegatus were performed. No mortality was observed in the range of 0.05mgC60/kg dry sediment to 11.33mgC60/kg dry sediment. A biota-sediment accumulation factor of micron-sized fullerene agglomerates (μ-C60) was 0.032±0.008 at day 28, which is relatively low compared with pyrene (1.62±0.22). Catalase (CAT) activity, an oxidative stress indicator, was elevated significantly on day 14 for L. variegatus exposed to μ-C60 (p=0.034). This peak CAT activity corresponded to the highest body residues observed in the present study, 199±80μgC60/kg dry weight sediment. Additionally, smaller C60 agglomerate size increased bioaccumulation potential in L. variegatus. The relationship between C60 body residue and the increased CAT activity followed a linear regression. All results suggest that C60 has a lower bioaccumulation potential than pyrene but a higher potential to induce oxidative stress in L. variegatus.

Original languageEnglish
Pages (from-to)1135-1141
Number of pages7
JournalEnvironmental Toxicology and Chemistry
Volume33
Issue number5
DOIs
StatePublished - May 2014

Keywords

  • Benthic worm
  • Bioaccumulation
  • Fate and transport
  • Nanoecotoxicology

Fingerprint

Dive into the research topics of 'Bioaccumulation of fullerene (C60) and corresponding catalase elevation in Lumbriculus variegatus'. Together they form a unique fingerprint.

Cite this