Abstract
Photocurrent excitation spectroscopy has been employed to probe the band structure and basic parameters of hexagonal boron nitride (h-BN) epilayers synthesized by metal-organic chemical vapor deposition. Bias dependent photocurrent excitation spectra clearly resolved the band-to-band, free exciton, and impurity bound exciton transitions. The energy bandgap (Eg), binding energy of free exciton (Ex), and binding energy of impurity bound exciton (Ebx) in h-BN have been directly obtained from the photocurrent spectral peak positions and comparison with the related photoluminescence emission peaks. The direct observation of the band-to-band transition suggests that h-BN is a semiconductor with a direct energy bandgap of Eg = 6.42 eV at room temperature. These results provide a more coherent picture regarding the fundamental parameters of this important emerging ultra-wide bandgap semiconductor.
Original language | English |
---|---|
Article number | 102101 |
Journal | Applied Physics Letters |
Volume | 109 |
Issue number | 12 |
DOIs | |
State | Published - Sep 19 2016 |