Anti-atherogenic effects of CD36-targeted epigallocatechin gallate-loaded nanoparticles

Jia Zhang, Shufang Nie, Yujiao Zu, Mehrnaz Abbasi, Jun Cao, Chuan Li, Dayong Wu, Safaa Labib, Gordon Brackee, Chwan Li Shen, Shu Wang

Research output: Contribution to journalArticle

3 Scopus citations

Abstract

Intimal macrophages play a critical role in atherosclerotic lesion initiation and progression by taking up oxidized low-density lipoprotein (oxLDL) and promoting inflammatory process. 1-(Palmitoyl)-2-(5-keto-6-octene-dioyl) phosphatidylcholine (KOdiA-PC), a major type of oxidized phosphatidylcholines (PC) found on oxLDL, has a high binding affinity to the macrophage scavenger receptor CD36 and participates in CD36-mediated recognition and uptake of oxLDL by intimal macrophages. We successfully synthesized epigallocatechin gallate (EGCG)-loaded nanoparticles (Enano), which were composed of EGCG, PC, (+) alpha-tocopherol acetate, and surfactant. We also incorporated KOdiA-PC on the surface of Enano to make ligand-coated Enano (L-Enano) to target intimal macrophages. The objectives of this study were to determine the anti-atherogenic effects of Enano and L-Enano in LDL receptor null (LDLr−/−) mice. Our in vitro data demonstrated that L-Enano had a higher binding affinity to mouse peritoneal macrophages than Enano. This high binding affinity was diminished by CD36 antibodies or knockdown of the CD36 receptor in mouse peritoneal macrophages, confirming the specific binding of L-Enano to the macrophage CD36 receptor. LDLr−/− mice were randomly divided to six groups and received weekly tail vein injection with PBS, EGCG, void nanoparticles (Vnano), Enano, ligand-coated Vnano (L-Vnano), or L-Enano once per week for 22 weeks. The dose of EGCG was 25 mg per kg body weight. L-Enano at 20 μg/mL significantly decreased production of monocyte chemoattractant protein-1, tumor necrosis factor alpha, and interleukin-6 from mouse macrophages, while having no effect on their plasma levels compared to the PBS control. There were no significant differences in blood lipid profiles among six treatment groups. Mice treated with L-Enano also had significantly smaller lesion surface areas on aortic arches compared to the PBS control. Liver EGCG content was decreased by treatments in the order of EGCG>Enano>L-Enano. Native EGCG had inhibitory effects on liver and body fat accumulation. This molecular target approach signals an important step towards inhibiting atherosclerosis development via targeted delivery of bioactive compounds to intimal macrophages.

Original languageEnglish
Pages (from-to)263-273
Number of pages11
JournalJournal of Controlled Release
Volume303
DOIs
StatePublished - Jun 10 2019

Keywords

  • Atherosclerosis
  • CD36
  • Epigallocatechin gallate
  • Macrophages
  • Nanoparticles
  • Targeted delivery

Fingerprint Dive into the research topics of 'Anti-atherogenic effects of CD36-targeted epigallocatechin gallate-loaded nanoparticles'. Together they form a unique fingerprint.

  • Cite this

    Zhang, J., Nie, S., Zu, Y., Abbasi, M., Cao, J., Li, C., Wu, D., Labib, S., Brackee, G., Shen, C. L., & Wang, S. (2019). Anti-atherogenic effects of CD36-targeted epigallocatechin gallate-loaded nanoparticles. Journal of Controlled Release, 303, 263-273. https://doi.org/10.1016/j.jconrel.2019.04.018