Anomalous separation of homogeneous particle-fluid mixtures: Further observations

H. S. Husain, F. Hussain, M. Goldshtik

Research output: Contribution to journalArticle

9 Scopus citations

Abstract

Previously, we reported the puzzling phenomenon of separation of components from an initially uniform mixture (air and smoke) in a rotating flow device (a cylindrical can with a rotating end disk). Here we summarize further studies of this phenomenon through experiments, analysis of particle forces, and direct numerical simulation (DNS). Separation of spherical polystyrene particles when immersed in water or pure alcohol lends further credence to the phenomenon. We have studied the dependence of the particle-free column size and its establishment time on particle size, particle concentration, disk and cylinder Reynolds numbers, and fluid composition. The evolution of passive markers in DNS shows segregation similar to that observed in experiments, supporting our kinematic separation hypothesis. However, kinematic action, though important, is inadequate to explain the antidiffusion phenomenon. Although estimates show that known particle forces cannot account for the particle separation, experimental results suggest the action of a yet unknown lift force whose effect is magnified kinematically in our apparatus. At high particle concentrations or when a small amount of solute (e.g. sugar, salt, or alcohol) is added to water polystyrene particle mixtures, the flow within the column becomes unstable and the particle-free column loses its axial symmetry; this unusual behavior is not yet clearly understood.

Original languageEnglish
Pages (from-to)4909-4923
Number of pages15
JournalPhysical Review E
Volume52
Issue number5
DOIs
StatePublished - 1995

Fingerprint Dive into the research topics of 'Anomalous separation of homogeneous particle-fluid mixtures: Further observations'. Together they form a unique fingerprint.

  • Cite this