Analyses of large quasistatic deformations of inelastic bodies by a new hybrid-stress finite element algorithm

K. W. Reed, S. N. Atluri

Research output: Contribution to journalArticlepeer-review

43 Scopus citations

Abstract

A new hybrid-stress finite element algorithm, suitable for analyses of large, quasistatic, inelastic deformations, is presented. The algorithm is based upon a generalization of de Veubeke's complementary energy principle. The principal variables in the formulation are the nominal stress rate and spin, and the resulting finite element equations are discrete versions of the equations of compatibility and angular momentum balance. The algorithm produces true rates, time derivatives, as opposed to 'increments'. There results a complete separation of the boundary value problem (for stress rate and velocity) and the initial value problem (for total stress and deformation); hence, their numerical treatments are essentially independent. After a fairly comprehensive discussion of the numerical treatment of the boundary value problem, we launch into a detailed examination of the numerical treatment of the initial value problem, covering the topics of efficiency, stability and objectivity. The paper is closed with a set of examples, finite homogeneous deformation problems, which serve to bring out important aspects of the algorithm.

Original languageEnglish
Pages (from-to)245-295
Number of pages51
JournalComputer Methods in Applied Mechanics and Engineering
Volume39
Issue number3
DOIs
StatePublished - Sep 1983

Fingerprint

Dive into the research topics of 'Analyses of large quasistatic deformations of inelastic bodies by a new hybrid-stress finite element algorithm'. Together they form a unique fingerprint.

Cite this