An experimental analysis of elliptical adhesive contact

Bilsay Sümer, Cagdas D. Onal, Burak Aksak, Metin Sitti

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

The elliptical adhesive contact is studied experimentally utilizing two hemicylinders of elastomeric poly(dimethylsiloxane) (PDMS). Experimental results are compared with the recent approximate Johnson-Kendall-Roberts (JKR) theory for elliptical contacts, and the deviation of the experiments from this theory is discussed in detail. To do this, the cylinders are placed with different skew angles with respect to each other in order to emulate the effect of orientation. The maximum adhesion force and the size of the contact zone are determined experimentally under the action of surface energy. The difference of the maximum adhesion force between experiments and theory is found to increase as the contact area goes from mildly elliptical to slim elliptical contact. Similarly, it is observed that the contact area can be approximated to have elliptical geometry for a wide range of skew angles while a deviation is observed for slim elliptical contacts. Moreover, the reduction in the contact area is observed to be nonself-similar during detachment from an elliptical shape to a circular one.

Original languageEnglish
Article number113512
JournalJournal of Applied Physics
Volume107
Issue number11
DOIs
StatePublished - Jun 1 2010

Fingerprint

Dive into the research topics of 'An experimental analysis of elliptical adhesive contact'. Together they form a unique fingerprint.

Cite this