An alternative formulation for determining weights of joint displacement objective function in seated posture prediction

Qiuling Zou, Qinghong Zhang, Jingzhou Yang, Robyn Boothby, Jared Gragg, Aimee Cloutier

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

The human posture prediction model is one of the most important and fundamental components in digital human models. The direct optimization-based method has recently gained more attention due to its ability to give greater insights, compared to other approaches, as how and why humans assume a certain pose. However, one longstanding problem of this method is how to determine the cost function weights in the optimization formulation. This paper presents an alternative formulation based on our previous inverse optimization approach. The cost function contains two components. The first is the weighted summation of the difference between experimental joint angles and neutral posture, and the second is the weighted summation of the difference between predicted joint angles and the neutral posture. The final objective function is then the difference of these two components. Constraints include (1) normalized weights within limits; (2) an inner optimization problem to solve for the joint angles, where joint displacement is the objective function; (3) the end-effector reaches the target point; and (4) the joint angles are within their limits. Furthermore, weight limits and linear weight constraints determined through observation are implemented. A 24 degree of freedom (DOF) human upper body model is used to study the formulation. An in-house motion capture system is used to obtain the realistic posture. Four different percentiles of subjects are selected and a total of 18 target points are designed for this experiment. The results show that using the new objective function in this alternative formulation can greatly improve the accuracy of the predicted posture.

Original languageEnglish
Title of host publicationDigital Human Modeling - Third International Conference, ICDHM 2011, Held as Part of HCI International 2011, Proceedings
Pages231-242
Number of pages12
DOIs
StatePublished - 2011
Event3rd International Conference on Digital Human Modeling, ICDHM 2011, Held as Part of HCI International 2011 - Orlando, FL, United States
Duration: Jul 9 2011Jul 14 2011

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume6777 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference3rd International Conference on Digital Human Modeling, ICDHM 2011, Held as Part of HCI International 2011
CountryUnited States
CityOrlando, FL
Period07/9/1107/14/11

Keywords

  • Posture prediction
  • digital human
  • direct optimization-based posture prediction

Fingerprint Dive into the research topics of 'An alternative formulation for determining weights of joint displacement objective function in seated posture prediction'. Together they form a unique fingerprint.

Cite this