TY - JOUR
T1 - Airborne environmental DNA metabarcoding detects more diversity, with less sampling effort, than a traditional plant community survey
AU - Johnson, Mark D.
AU - Fokar, Mohamed
AU - Cox, Robert D.
AU - Barnes, Matthew A.
N1 - Funding Information:
Peter Dotray, Karin Ardon-Dryer provided guidance as members of MJ’s doctoral dissertation committee. Robert Scott Van Pelt provided the BSNE dust collector traps from the United States Department of Agriculture. Elizabeth Roesler, Sadie Roth, Hayden Hays and Kristin Kabat provided comments on an earlier draft of this manuscript. Kristy Deiner and Fabian Roger provided help with the bioinformatics of our BLASTn data. Juan Garcia provided assistance with the collection of traditional survey data. Texas Tech graduate students from natural resource management, biology, and the Association of Natural Resource Scientists helped assist with the traditional plant community survey. Texas Tech undergraduates from natural resource management, biology and Texas Tech Student Chapter of the Wildlife Society helped assist with the traditional surveys.
Funding Information:
MDJ was supported by the Texas Tech Pendleton-Rogers Endowed Scholarship. Data collection and analysis were funded by the National Institute of Health 1S10OD025115-01 to the Center for Biotechnology and Genomics.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Background: Airborne environmental DNA (eDNA) research is an emerging field that focuses on the detection of species from their genetic remnants in the air. The majority of studies into airborne eDNA of plants has until now either focused on single species detection, specifically only pollen, or human health impacts, with no previous studies surveying an entire plant community through metabarcoding. We therefore conducted an airborne eDNA metabarcoding survey and compared the results to a traditional plant community survey. Results: Over the course of a year, we conducted two traditional transect-based visual plant surveys alongside an airborne eDNA sampling campaign on a short-grass rangeland. We found that airborne eDNA detected more species than the traditional surveying method, although the types of species detected varied based on the method used. Airborne eDNA detected more grasses and forbs with less showy flowers, while the traditional method detected fewer grasses but also detected rarer forbs with large showy flowers. Additionally, we found the airborne eDNA metabarcoding survey required less sampling effort in terms of the time needed to conduct a survey and was able to detect more invasive species than the traditional method. Conclusions: Overall, we have demonstrated that airborne eDNA can act as a sensitive and efficient plant community surveying method. Airborne eDNA surveillance has the potential to revolutionize the way plant communities are monitored in general, track changes in plant communities due to climate change and disturbances, and assist with the monitoring of invasive and endangered species.
AB - Background: Airborne environmental DNA (eDNA) research is an emerging field that focuses on the detection of species from their genetic remnants in the air. The majority of studies into airborne eDNA of plants has until now either focused on single species detection, specifically only pollen, or human health impacts, with no previous studies surveying an entire plant community through metabarcoding. We therefore conducted an airborne eDNA metabarcoding survey and compared the results to a traditional plant community survey. Results: Over the course of a year, we conducted two traditional transect-based visual plant surveys alongside an airborne eDNA sampling campaign on a short-grass rangeland. We found that airborne eDNA detected more species than the traditional surveying method, although the types of species detected varied based on the method used. Airborne eDNA detected more grasses and forbs with less showy flowers, while the traditional method detected fewer grasses but also detected rarer forbs with large showy flowers. Additionally, we found the airborne eDNA metabarcoding survey required less sampling effort in terms of the time needed to conduct a survey and was able to detect more invasive species than the traditional method. Conclusions: Overall, we have demonstrated that airborne eDNA can act as a sensitive and efficient plant community surveying method. Airborne eDNA surveillance has the potential to revolutionize the way plant communities are monitored in general, track changes in plant communities due to climate change and disturbances, and assist with the monitoring of invasive and endangered species.
KW - Methods comparison
KW - Plant genetics
KW - eDNA
UR - http://www.scopus.com/inward/record.url?scp=85120856138&partnerID=8YFLogxK
U2 - 10.1186/s12862-021-01947-x
DO - 10.1186/s12862-021-01947-x
M3 - Article
C2 - 34872490
AN - SCOPUS:85120856138
SN - 1472-6785
VL - 21
JO - BMC Ecology
JF - BMC Ecology
IS - 1
M1 - 218
ER -