TY - JOUR
T1 - Adipogenic human adenovirus-36 reduces leptin expression and secretion and increases glucose uptake by fat cells
AU - Vangipuram, S. D.
AU - Yu, M.
AU - Tian, J.
AU - Stanhope, K. L.
AU - Pasarica, M.
AU - Havel, P. J.
AU - Heydari, A. R.
AU - Dhurandhar, N. V.
N1 - Funding Information:
This work was supported in part by funds from the William Hardy Endowment for Obesity Research, and NIH Grant 1R01 DK066164-01 to NVD.
PY - 2007/1/25
Y1 - 2007/1/25
N2 - Objective: Human adenovirus Ad-36 causes adiposity in animal models and enhances differentiation and lipid accumulation in human and 3T3-L1 preadipocytes, which may, in part, explain the adipogenic effect of Ad-36. We determined the consequences of Ad-36 infection on leptin and glucose metabolism in fat cells. Design: 3T3-L1 preadipocytes were used to determine the effect of infection by human adenoviruses Ad-36, Ad-2, Ad-9 and Ad-37 on leptin secretion and lipid accumulation. Rat primary adipocytes were used to determine the effect of Ad-36 infection on leptin secretion and glucose uptake in vitro. Furthermore, the effect of Ad-36 on expressions of leptin and selected genes of de novo lipogenesis pathway of visceral adipose tissue were compared ex vivo, between Ad-36 infected and uninfected control rats. Results: Ad-36 suppressed the expression of leptin mRNA in 3T3-L1 cells by approximately 58 and 52% on days 3 and 5 post-infection, respectively. Leptin release normalized to cellular lipid content was 51% lower (P<0.002) in the Ad-36 infected 3T3-L1 cells. Lipid accumulation was significantly greater and leptin secretion was lower for the 3T3-L1 cells infected with other human adenoviruses Ad-9, Ad-36, or Ad-37. Whereas, human adenovirus Ad-2 did not influence cellular lipid accumulation or the leptin release. In rat primary adipocytes, Ad-36 reduced leptin release by about 40% in presence of 0.48 (P<0.01) or 1.6 nM insulin (P<0.05) and increased glucose uptake by 93% (P<0.001) or 18% (P<0.05) in presence of 0 or 0.48 nM insulin, respectively. Next, the adipose tissue of Ad-36 infected rats showed two to fivefold lower leptin mRNA expression, and 1.6- to 21-fold greater expressions for acetyl Co-A carboxylase-1 and 1.2- to 6.3-fold greater expressions for fatty acid synthase, key genes of de novo lipogenesis, compared to the uninfected weight and adiposity matched controls. Conclusion: The in vitro and ex vivo studies show that Ad-36 modulates adipocyte differentiation, leptin production and glucose metabolism. Whether such a modulation contributes to enhanced adipogenesis and consequent adiposity in Ad-36 infected animals or humans needs to be determined.
AB - Objective: Human adenovirus Ad-36 causes adiposity in animal models and enhances differentiation and lipid accumulation in human and 3T3-L1 preadipocytes, which may, in part, explain the adipogenic effect of Ad-36. We determined the consequences of Ad-36 infection on leptin and glucose metabolism in fat cells. Design: 3T3-L1 preadipocytes were used to determine the effect of infection by human adenoviruses Ad-36, Ad-2, Ad-9 and Ad-37 on leptin secretion and lipid accumulation. Rat primary adipocytes were used to determine the effect of Ad-36 infection on leptin secretion and glucose uptake in vitro. Furthermore, the effect of Ad-36 on expressions of leptin and selected genes of de novo lipogenesis pathway of visceral adipose tissue were compared ex vivo, between Ad-36 infected and uninfected control rats. Results: Ad-36 suppressed the expression of leptin mRNA in 3T3-L1 cells by approximately 58 and 52% on days 3 and 5 post-infection, respectively. Leptin release normalized to cellular lipid content was 51% lower (P<0.002) in the Ad-36 infected 3T3-L1 cells. Lipid accumulation was significantly greater and leptin secretion was lower for the 3T3-L1 cells infected with other human adenoviruses Ad-9, Ad-36, or Ad-37. Whereas, human adenovirus Ad-2 did not influence cellular lipid accumulation or the leptin release. In rat primary adipocytes, Ad-36 reduced leptin release by about 40% in presence of 0.48 (P<0.01) or 1.6 nM insulin (P<0.05) and increased glucose uptake by 93% (P<0.001) or 18% (P<0.05) in presence of 0 or 0.48 nM insulin, respectively. Next, the adipose tissue of Ad-36 infected rats showed two to fivefold lower leptin mRNA expression, and 1.6- to 21-fold greater expressions for acetyl Co-A carboxylase-1 and 1.2- to 6.3-fold greater expressions for fatty acid synthase, key genes of de novo lipogenesis, compared to the uninfected weight and adiposity matched controls. Conclusion: The in vitro and ex vivo studies show that Ad-36 modulates adipocyte differentiation, leptin production and glucose metabolism. Whether such a modulation contributes to enhanced adipogenesis and consequent adiposity in Ad-36 infected animals or humans needs to be determined.
KW - 3T3-L1
KW - Ad-36
KW - Adiposity
KW - Glucose
KW - Infectobesity
KW - Lactate
UR - http://www.scopus.com/inward/record.url?scp=33845808844&partnerID=8YFLogxK
U2 - 10.1038/sj.ijo.0803366
DO - 10.1038/sj.ijo.0803366
M3 - Article
C2 - 16703005
AN - SCOPUS:33845808844
SN - 0307-0565
VL - 31
SP - 87
EP - 96
JO - International Journal of Obesity
JF - International Journal of Obesity
IS - 1
ER -