Additive manufacturing (3D printing) for analytical chemistry

Harsshit Agrawaal, J. E. Thompson

Research output: Contribution to journalReview articlepeer-review

9 Scopus citations


In recent years, 3D printing, also known as additive manufacturing, has received unprecedented level of interest and attention in the field of analytical chemistry due to its capability for rapid prototyping, decreased fabrication time, one-step fabrication, and ever increasing palette of functional print materials. The process of 3D printing works by depositing or polymerizing thin layers of material layer-by-layer in order to fabricate the desired object. Although all the 3D printers are designed to fulfil the same task, their size, resolution, compatible material, need for post-print processing of the object, and cost can vary significantly. This review presents a brief discussion on working principles and presents comparisons between stereolithography, digital light processing, two-photon polymerization, material jetting, fused deposition modeling, laminated object manufacturing, selective laser sintering, continuous interface liquid printing, aerosol jet printing, and bio-printing. The review also presents select applications in the field of analytical chemistry in which 3D printing was used to advance science. Applications considered advance chromatography, extraction and preconcentration, electrochemical applications, microfluidic devices, and spectroscopy. Although, 3D printing has much to offer analytical chemistry, the cost, need for post processing of devices, limited print materials, and need for higher resolution still limits broader application of the technology. We conclude further advances in printer performance and increasingly functional materials are required to achieve the full potential of additive manufacturing in the future.

Original languageEnglish
Article number100036
JournalTalanta Open
StatePublished - Aug 2021


  • 3D printing
  • Additive manufacturing
  • Analytical chemistry
  • Chemical analysis


Dive into the research topics of 'Additive manufacturing (3D printing) for analytical chemistry'. Together they form a unique fingerprint.

Cite this