Absorption and fluorescence spectra of poly(p -phenylenevinylene) (PPV) oligomers: An ab initio simulation

Thiago M. Cardozo, Adélia J.A. Aquino, Mario Barbatti, Itamar Borges, Hans Lischka

Research output: Contribution to journalArticlepeer-review

21 Scopus citations


The absorption and fluorescence spectra of poly(p-phenylenevinylene) (PPV) oligomers with up to seven repeat units were theoretically investigated using the algebraic diagrammatic construction method to second order, ADC(2), combined with the resolution-of-the-identity (RI) approach. The ground and first excited state geometries of the oligomers were fully optimized. Vertical excitation energies and oscillator strengths of the first four transitions were computed. The vibrational broadening of the absorption and fluorescence spectra was studied using a semiclassical nuclear ensemble method. After correcting for basis set and solvent effects, we achieved a balanced description of the absorption and fluorescence spectra by means of the ADC(2) approach. This fact is documented by the computed Stokes shift along the PPV series, which is in good agreement with the experimental values. The experimentally observed band width of the UV absorption and fluorescence spectra is well reproduced by the present simulations showing that the nuclear ensemble generated should be well suitable for consecutive surface hopping dynamics simulations.

Original languageEnglish
Pages (from-to)1787-1795
Number of pages9
JournalJournal of Physical Chemistry A
Issue number9
StatePublished - Mar 5 2015


Dive into the research topics of 'Absorption and fluorescence spectra of poly(p -phenylenevinylene) (PPV) oligomers: An ab initio simulation'. Together they form a unique fingerprint.

Cite this