A Weibull failure theory for contact loading in gears with asymmetric teeth

M. Dhorje, S. Ekwaro-Osire, M. P.H. Khandaker, F. Karpat

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Meshing gear pairs have regions of high stress gradients due to contact loading. In other applications, high stress gradients can also be generated due to geometric irregularities, material mismatch, or thermal mismatch. In meshing gear pairs, the extent of the region with a high stress gradient depends on the material and the geometric properties. It is common that failure, through crack initiation, will occur in the region of high stress and strain gradients. The conventional Weibull failure theory fails to accurately predict the probability of failure of components with high stress gradients. In this research, the contact loading in a gear pair, with asymmetric teeth, is analyzed. Thus, the objective of this work is to develop a Weibull failure theory to handle the high stress gradients due to contact loading in gear pairs with asymmetric teeth. The modified Weibull failure theory developed uses the weight function approach to account for the variation of the critical stress along the face of natural flaws. For contacting gear teeth, it is demonstrated that the modified Weibull failure theory generates monotonous trends for the probability of failure with respect to increasing Weibull modulus.

Original languageEnglish
Title of host publication2008 Proceedings of ASME International Mechanical Engineering Congress and Exposition, IMECE 2008
Pages181-186
Number of pages6
DOIs
StatePublished - 2009
Event2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008 - Boston, MA, United States
Duration: Oct 31 2008Nov 6 2008

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings
Volume16

Conference

Conference2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008
Country/TerritoryUnited States
CityBoston, MA
Period10/31/0811/6/08

Fingerprint

Dive into the research topics of 'A Weibull failure theory for contact loading in gears with asymmetric teeth'. Together they form a unique fingerprint.

Cite this