TY - JOUR

T1 - A theoretical calculation of the rotation-vibration energies for lithium hydroxide, LiOH

AU - Bunker, P. R.

AU - Jensen, Per

AU - Karpfen, Alfred

AU - Lischka, Hans

N1 - Funding Information:
We thankP . F. Bematha nd P. A. Feldmanf or helpfuld iscussionas nd R. D. Brownf or communicating the resultsf rom Ref. (8) quotedh ere.T he ACPF calculationws ered oneon the IBM 3081 and NAS 9 160 computersa t the Universitya nd the TechnicalU niversityo f Vienna,a nd the MORBID calculationws ere carriedo ut on the CDC Cyber 860 installationa t the computerc entero f the Justus-LiebigU niversity GiessenT. he authorsa reg ratefuflo r ampleg rantso f computert ime in Viennaa ndG iessenT. his work was supportedin part by the DeutscheF orschungsgemeinsch(aWfte stG ermany),t he Fonds der Chemischen Industrie( West Germany),a nd the Fonds zur Fiirderungd er wissenschattlicheFno mchungP, rojectN o. P65OOC(A ustria).

PY - 1989/5

Y1 - 1989/5

N2 - We have calculated ab initio the three-dimensional potential energy surface of the LiOH molecule at 166 nuclear geometries spanning energy ranges of about 2500 cm-1 for the LiO stretch, 7500 cm-1 for the OH stretch, and 4000 cm-1 for the bend. The ab initio configuration interaction calculations were performed within the framework of the average coupled pair functional method [R. J. Gdanitz and R. Ahlrichs, Chem. Phys. Lett. 143, 413-420 (1988)]. The equilibrium structure is linear, but we found a very strong interaction between the LiO stretch and the bend such that at longer LiO distances the optimal structure is bent. The rotation and vibration energies for 7Li16OH, 7Li16OD, and 7Li18OH were calculated variationally using the Morse oscillatorigid bender internal dynamics Hamiltonian (MORBID) [P. Jensen, J. Mol. Spectrosc. 128, 478-501 (1988); J. Chem. Soc. Faraday Trans. 2 84, 1315-1340 (1988)]. For 7Li16OH we find that ν1 = 3831 cm-1, ν2 = 289 cm-1, and ν3 = 923 cm-1, and we obtain Be = 1.183 cm-1. The MORBID results are compared with rotation-vibration energies calculated with the nonrigid bender [P. Jensen and P. R. Bunker, J. Mol. Spectrosc. 118, 18-49 (1986)] and semirigid bender [P. R. Bunker and B. M. Landsberg, J. Mol. Spectrosc. 67, 374-385 (1977)] Hamiltonians.

AB - We have calculated ab initio the three-dimensional potential energy surface of the LiOH molecule at 166 nuclear geometries spanning energy ranges of about 2500 cm-1 for the LiO stretch, 7500 cm-1 for the OH stretch, and 4000 cm-1 for the bend. The ab initio configuration interaction calculations were performed within the framework of the average coupled pair functional method [R. J. Gdanitz and R. Ahlrichs, Chem. Phys. Lett. 143, 413-420 (1988)]. The equilibrium structure is linear, but we found a very strong interaction between the LiO stretch and the bend such that at longer LiO distances the optimal structure is bent. The rotation and vibration energies for 7Li16OH, 7Li16OD, and 7Li18OH were calculated variationally using the Morse oscillatorigid bender internal dynamics Hamiltonian (MORBID) [P. Jensen, J. Mol. Spectrosc. 128, 478-501 (1988); J. Chem. Soc. Faraday Trans. 2 84, 1315-1340 (1988)]. For 7Li16OH we find that ν1 = 3831 cm-1, ν2 = 289 cm-1, and ν3 = 923 cm-1, and we obtain Be = 1.183 cm-1. The MORBID results are compared with rotation-vibration energies calculated with the nonrigid bender [P. Jensen and P. R. Bunker, J. Mol. Spectrosc. 118, 18-49 (1986)] and semirigid bender [P. R. Bunker and B. M. Landsberg, J. Mol. Spectrosc. 67, 374-385 (1977)] Hamiltonians.

UR - http://www.scopus.com/inward/record.url?scp=0039306235&partnerID=8YFLogxK

U2 - 10.1016/0022-2852(89)90357-3

DO - 10.1016/0022-2852(89)90357-3

M3 - Article

AN - SCOPUS:0039306235

VL - 135

SP - 89

EP - 104

JO - Journal of Molecular Spectroscopy

JF - Journal of Molecular Spectroscopy

SN - 0022-2852

IS - 1

ER -