A stochastic analysis of highway capacity: Empirical evidence and implications

Shangjia Dong, Alireza Mostafizi, Haizhong Wang, Jia Li

Research output: Contribution to journalArticle

1 Scopus citations

Abstract

This paper presents a stochastic characterization of highway capacity and explores its implications on ramp metering control at the corridor level. The stochastic variation of highway capacity is captured through a Space–Time Autoregressive Integrated Moving Average (STARIMA) model. It is identified following a Seasonal STARIMA model (0, 0, 23) × (0, 1, 0)2, which indicates that the capacities of adjacent locations are spatially–temporally correlated. Hourly capacity patterns further verify the stochastic nature of highway capacity. The goal of this paper is to study (1) how to take advantage of the extra information, such as capacity variation, and (2) what benefits can be gained from stochastic capacity modeling. The implication of stochastic capacity is investigated through a ramp metering case study. A mean–standard deviation formulation of capacity is proposed to achieve the trade-off between traffic operation efficiency and robustness. Following that, a modified stochastic capacity-constraint ZONE ramp metering scheme embedded cell transmission model algorithm is introduced. The numerical experiment suggests that considering capacity variation information would alleviate the spillback effect and improve throughput. Monte Carlo simulation further supports this argument. This study helps verify and characterize the stochastic nature of capacity, validates the benefits of using capacity variation information, and thus enhances the necessity of implementing stochastic capacity in traffic operation.

Original languageEnglish
Pages (from-to)338-352
Number of pages15
JournalJournal of Intelligent Transportation Systems: Technology, Planning, and Operations
Volume22
Issue number4
DOIs
StatePublished - Jul 4 2018

Keywords

  • mean–standard deviation trade-off
  • ramp metering
  • space–time ARIMA
  • stochastic capacity

Fingerprint Dive into the research topics of 'A stochastic analysis of highway capacity: Empirical evidence and implications'. Together they form a unique fingerprint.

  • Cite this