A retrodirective array with reduced surface waves for wireless power transfer applications

Mohammad Fairouz, Mohammad Saed

Research output: Contribution to journalArticle

7 Scopus citations

Abstract

one-dimensional, dual frequency, active retrodirective array is proposed for wireless power transfer applications. Microstrip circular patch antennas with four shorting pins are used as array elements to suppress surface waves. The proposed design eliminates undesired coupling between array elements due to surface waves present in conventional microstrip antenna arrays in order to improve array performance. The antenna array uses circularly polarized microstrip elements with higher gain than conventional microstrip antennas. The proposed retrodirective array operates at 2.4 GHz for the interrogating signal and 5.8GHz for the retransmitted signal, using up-converting mixers. The beam scanning inherent in retrodirective arrays ensures a constant power level available to the charging devices, regardless of their location within an angular sector over which retrodirectivity is achieved. A two-element experimental prototype provided uniform power density within a 60◦ angular sector. The Design procedure, simulation results and experimental measurements are presented.

Original languageEnglish
Pages (from-to)179-186
Number of pages8
JournalProgress In Electromagnetics Research C
Volume55
DOIs
StatePublished - 2014

Fingerprint Dive into the research topics of 'A retrodirective array with reduced surface waves for wireless power transfer applications'. Together they form a unique fingerprint.

  • Cite this