A reduced-order meshless energy model for the vibrations of mistuned bladed disks-part II: Finite element benchmark comparisons

C. Fang, O. G. McGee, Y. El Aini

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


This paper draws upon the theoretical basis and applicability of the three-dimensional (3-D) reduced-order spectral-based "meshless" energy technology presented in a companion paper (McGee et al., 2013, "A Reduced-Order Meshless Energy Model for the Vibrations of Mistuned Bladed Disks-Part I: Theoretical Basis," ASME J. Turbomach., to be published) to predict free and forced responses of bladed disks comprised of randomly mistuned blades integrally attached to a flexible disk. The 3-D reduced-order spectral-based model employed is an alternative choice in the computational modeling landscape of bladed disks, such as conventionally-used finite element methods and component mode synthesis techniques, and even emerging element-free Hamiltonian--Galerkin, Petrov-Galerkin, boundary integral, and kernel-particle methods. This is because continuum-based modeling of a full disk annulus of mistuned blades is, at present, a steep task using these latter approaches for modal-type mistuning and/or rogue blade failure analysis. Hence, a considerably simplified and idealized bladed disk of 20 randomly mistuned blades mounted to a flexible disk was created and modeled not only to analyze its free and forced 3-D responses, but also to compare the predictive capability of the present reduced-order spectral-based "meshless" technology to general-purpose finite element procedures widely-used in industry practice. To benchmark future development of reduced-order technologies of turbomachinery mechanics analysts may use the present 3-D findings of the idealized 20-bladed disk as a new standard test model. Application of the 3-D reduced-order spectral-based "meshless" technology to an industry integrally-bladed rotor, having all of its blades modally mistuned, is also offered, where reasonably sufficient upper-bounds on the exact free and forced 3-D responses are predicted. These predictions expound new solutions of 3-D vibration effects of modal mistuning strength and pattern, interblade mechanical coupling, and localized modes on the free and forced response amplitudes.

Original languageEnglish
Article number061002
JournalJournal of Turbomachinery
Issue number3
StatePublished - Sep 13 2013


Dive into the research topics of 'A reduced-order meshless energy model for the vibrations of mistuned bladed disks-part II: Finite element benchmark comparisons'. Together they form a unique fingerprint.

Cite this