A Novel Wavelength-Division Differential Detection Technique for Microwave Pulse Oximetry

Aaron B. Carman, Changzhi Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Pulse oximetry is a common measure of patient health due to the correlation between peripheral oxygen saturation and arterial oxygen saturation. Current clinical grade pulse oximeters operate in transmittance mode and therefore must be placed on extremities such as the fingers, restricting patient mobility. Reflectance mode pulse oximeters are widely used in consumer applications, but lack the accuracy and precision required in clinical settings. In this paper, a novel wavelength-division differential detection technique is proposed which allows for a microwave-sensing based approach to reflectance mode pulse oximetry. The theory of microwave wavelength-division differential detection is given, then evaluated using a full-wave simulation of a wearable setup. The theoretical results demonstrate that wavelength-division differential detection produces a signal proportional to changes in the blood's dielectric characteristics but is dependent on the distance from sensor to target. Full-wave results confirm that wavelength-division differential detection may provide an avenue for a more accurate reflectance mode pulse oximetry measurement using microwave near-field sensing.

Original languageEnglish
Title of host publication43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7390-7393
Number of pages4
ISBN (Electronic)9781728111797
DOIs
StatePublished - 2021
Event43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021 - Virtual, Online, Mexico
Duration: Nov 1 2021Nov 5 2021

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021
Country/TerritoryMexico
CityVirtual, Online
Period11/1/2111/5/21

Fingerprint

Dive into the research topics of 'A Novel Wavelength-Division Differential Detection Technique for Microwave Pulse Oximetry'. Together they form a unique fingerprint.

Cite this