TY - JOUR
T1 - A note on the continuous mixing set
AU - Zhao, M.
AU - de Farias, I. R.
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2008/11
Y1 - 2008/11
N2 - The continuous mixing set is S = {(s, r, z) ∈ ℜ × ℜ+n × Zn : s + rj + wj zj ≥ fj, j = 1, ..., n}, where w1, ..., wn > 0 and f1, ..., fn ∈ ℜ. Let m = | {w1, ..., wn} |. We show that when w1 | ⋯ | wn, optimization over S can be performed in time O (nm + 1), and in time O (n log n) when w1 = ⋯ = wn = 1.
AB - The continuous mixing set is S = {(s, r, z) ∈ ℜ × ℜ+n × Zn : s + rj + wj zj ≥ fj, j = 1, ..., n}, where w1, ..., wn > 0 and f1, ..., fn ∈ ℜ. Let m = | {w1, ..., wn} |. We show that when w1 | ⋯ | wn, optimization over S can be performed in time O (nm + 1), and in time O (n log n) when w1 = ⋯ = wn = 1.
KW - Branch-and-cut
KW - Mixed-integer programming
KW - Polyhedral combinatorics
KW - Simple mixed-integer set
UR - http://www.scopus.com/inward/record.url?scp=54249086085&partnerID=8YFLogxK
U2 - 10.1016/j.orl.2008.08.001
DO - 10.1016/j.orl.2008.08.001
M3 - Article
AN - SCOPUS:54249086085
VL - 36
SP - 726
EP - 733
JO - Operations Research Letters
JF - Operations Research Letters
SN - 0167-6377
IS - 6
ER -