A network flow model for the genesis and migration of gas phase

Koukung Alex Chang, W. Brent Lindquist

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


We present a network flow model to compute transport, through a pore network, of a compositional fluid consisting of water with a dissolved hydrocarbon gas. The model captures single-phase flow (below local bubble point conditions) as well as the genesis and migration of the gas phase when bubble point conditions are achieved locally. Constant temperature computational tests were run on simulated 2D and 3D micro-networks near bubble point pressure conditions. In the 2D simulations which employed a homogeneous network, negligible capillary pressure, and linear relative permeability relations, the observed concentration of CO2 dissolved in the liquid phase throughout the medium was linearly related to the liquid pressure. In the case of no gravity, the saturation of the gas phase throughout the medium was also linearly related to the liquid pressure; under gravity, the relationship became nonlinear in regions where buoyancy forces were significant. The 3D heterogeneous network model had nonnegligible capillary pressure and nonlinear relative permeability functions. While 100 % of the CO2 entered the 3D network dissolved in the liquid phase, 25 % of the void space was occupied by gas phase and 47 % of the CO2 exiting the outlet face did so via the gaseous phase after 500 s of simulation time.

Original languageEnglish
Pages (from-to)67-81
Number of pages15
JournalComputational Geosciences
Issue number1
StatePublished - Feb 2013


  • Carbon dioxide sequestration
  • Compositional flow
  • Gas genesis
  • Network flow model


Dive into the research topics of 'A network flow model for the genesis and migration of gas phase'. Together they form a unique fingerprint.

Cite this