TY - GEN
T1 - A logic programming approach to aspect extraction in opinion mining
AU - Liu, Qian
AU - Gao, Zhiqiang
AU - Liu, Bing
AU - Zhang, Yuanlin
PY - 2013
Y1 - 2013
N2 - Aspect extraction aims to extract fine-grained opinion targets from opinion texts. Recent work has shown that the syntactical approach performs well. In this paper, we show that Logic Programming, particularly Answer Set Programming (ASP), can be used to elegantly and efficiently implement the key components of syntax based aspect extraction. Specifically, the well known double propagation (DP) method is implemented using 8 ASP rules that naturally model all key ideas in the DP method. Our experiment on a widely used data set also shows that the ASP implementation is much faster than a Java-based implementation. Syntactical approach has its limitation too. To further improve the performance of syntactical approach, we identify a set of general words from WordNet that have little chance to be an aspect and prune them when extracting aspects. The concept of general words and their pruning are concisely captured by 10 new ASP rules, and a natural extension of the 8 rules for the original DP method. Experimental results show a major improvement in precision with almost no drop in recall compared with those reported in the existing work on a typical benchmark data set. Logic Programming provides a convenient and effective tool to encode and thus test knowledge needed to improve the aspect extraction methods so that the researchers can focus on the identification and discovery of new knowledge to improve aspect extraction.
AB - Aspect extraction aims to extract fine-grained opinion targets from opinion texts. Recent work has shown that the syntactical approach performs well. In this paper, we show that Logic Programming, particularly Answer Set Programming (ASP), can be used to elegantly and efficiently implement the key components of syntax based aspect extraction. Specifically, the well known double propagation (DP) method is implemented using 8 ASP rules that naturally model all key ideas in the DP method. Our experiment on a widely used data set also shows that the ASP implementation is much faster than a Java-based implementation. Syntactical approach has its limitation too. To further improve the performance of syntactical approach, we identify a set of general words from WordNet that have little chance to be an aspect and prune them when extracting aspects. The concept of general words and their pruning are concisely captured by 10 new ASP rules, and a natural extension of the 8 rules for the original DP method. Experimental results show a major improvement in precision with almost no drop in recall compared with those reported in the existing work on a typical benchmark data set. Logic Programming provides a convenient and effective tool to encode and thus test knowledge needed to improve the aspect extraction methods so that the researchers can focus on the identification and discovery of new knowledge to improve aspect extraction.
KW - Answer set programming
KW - Aspect extraction
KW - Dependency relation
KW - Logic programming
KW - Opinion mining
UR - http://www.scopus.com/inward/record.url?scp=84893255187&partnerID=8YFLogxK
U2 - 10.1109/WI-IAT.2013.40
DO - 10.1109/WI-IAT.2013.40
M3 - Conference contribution
AN - SCOPUS:84893255187
SN - 9781479929023
T3 - Proceedings - 2013 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2013
SP - 276
EP - 283
BT - Proceedings - 2013 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2013
T2 - 2013 12th IEEE/WIC/ACM International Conference on Web Intelligence, WI 2013
Y2 - 17 November 2013 through 20 November 2013
ER -