A levy flight-random walk model for bioturbation

Danny Reible, Sanat Mohanty

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Levy flights are employed in a lattice model of contaminant migration by bioturbation, the reworking of sediment by benthic organisms. The model couples burrowing, foraging, and conveyor-belt feeding with molecular diffusion. The model correctly predicts a square-root dependence on bioturbation rates over a wide range of biomass densities. The model is used to predict the effect of bioturbation on the redistribution of contaminants in laboratory microcosms containing pyrene-inoculated sediments and the tubificid oligochaete Limnodrilus hoffmeisteri. The model predicts the dynamic flux from the sediment and in-bed concentration profiles that are consistent with observations. The sensitivity of flux and concentration profiles to the specific mechanisms of bioturbation are explored with the model. The flux of pyrene to the overlying water was largely controlled by the simulated foraging activities.

Original languageEnglish
Pages (from-to)875-881
Number of pages7
JournalEnvironmental Toxicology and Chemistry
Volume21
Issue number4
DOIs
StatePublished - Apr 1 2002

Keywords

  • Benthos
  • Bioturbation
  • Levy flights
  • Simulation

Fingerprint

Dive into the research topics of 'A levy flight-random walk model for bioturbation'. Together they form a unique fingerprint.

Cite this