3D printed food design and fabrication approach for manufacturability, rheology, and nutrition trade-offs

Rahmatul Mahmoud, Quang Nguyen, Gordon Christopher, Paul F. Egan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

3D printing enables the production of personalized designs that are desirable in the medical industry for applications including orthopedics, tissue engineering, and personalized nutrition. Currently, the design process relies on trial-and-error approaches, especially for biomaterial development, and there is a need for methodologies to streamline the design process to facilitate automation. Here, we investigate a design methodology for printing foods by mixing novel biomaterial combinations informed by rheological measurements that indicate printability. The process consists of first printing basic designs with chocolate, marzipan, and potato biomaterials known to print consistently. Rheological measurements are collected for these materials and compared to a novel pumpkin biomaterial. The pumpkin had a higher complex modulus and lower mechanical loss tangent than all other biomaterials, therefore motivating the addition of rheological agents to reach more favorable properties. Varied concentrations of corn starch and guar gum were added to the pumpkin to improve printability while altering the nutrient distribution. A 4% inclusion of guar gum provided the most consistent pumpkin prints. A complex 3D object was fabricated with the 4% guar gum pumpkin material, therefore demonstrating the merits in using rheological properties to inform printability for use in design automation routines. The design approach enabled comparisons of relative nutrition and printability trade-offs to demonstrate a proof-of-concept user interface for design automation to facilitate customized food production. Further research to develop a complete design methodology for linking rheological properties to printability would promote consistent prediction of print quality for novel formulations to support design automation, with potential generalizability for diverse biomaterials.

Original languageEnglish
Title of host publication47th Design Automation Conference (DAC)
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791885383
DOIs
StatePublished - 2021
Event47th Design Automation Conference, DAC 2021, Held as Part of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2021 - Virtual, Online
Duration: Aug 17 2021Aug 19 2021

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume3A-2021

Conference

Conference47th Design Automation Conference, DAC 2021, Held as Part of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2021
CityVirtual, Online
Period08/17/2108/19/21

Fingerprint

Dive into the research topics of '3D printed food design and fabrication approach for manufacturability, rheology, and nutrition trade-offs'. Together they form a unique fingerprint.

Cite this